当前位置:  首页 >> 最新重要论文

最新重要论文

A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme, Nat Chem, 5 Nov 2018

发布时间:2018年11月06日

Nat Chem, 5 November 2018

A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme

Xiaohong Liu, Fuying Kang, Cheng Hu, Li Wang, Zhen Xu, Dandan Zheng, Weimin Gong, Yi Lu, Yanhe Ma & Jiangyun Wang

Abstract

Photosensitizers, which harness light energy to upgrade weak reductants to strong reductants, are pivotal components of the natural and artificial photosynthesis machineries. However, it has proved difficult to enhance and expand their functions through genetic engineering. Here we report a genetically encoded, 27kDa photosensitizer protein (PSP), which facilitates the rational design of miniature photocatalytic CO2-reducing enzymes. Visible light drives PSP efficiently into a long-lived triplet excited state (PSP*), which reacts rapidly with reduced nicotinamide adenine dinucleotide to generate a super-reducing radical (PSP.), which is strong enough to reduce many CO2-reducing catalysts. We determined the three-dimensional structure of PSP. at 1.8 angstrom resolution by X-ray crystallography. Genetic engineering enabled the site-specific attachment of a nickel–terpyridine complex and the modular optimization of the photochemical properties of PSP, the chromophore/catalytic centre distance and the catalytic centre microenvironment, which culminated in a miniature photocatalytic CO2-reducing enzyme that has a CO2/CO conversion quantum efficiency of 2.6%.

文章链接:https://www.nature.com/articles/s41557-018-0150-4

相关报道:http://www.ibp.cas.cn/kyjz/zxdt/201811/t20181106_5165515.html

 

 

    附件下载: