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Wnt5a uses CD146 as a receptor to regulate
cell motility and convergent extension
Zhongde Ye1, Chunxia Zhang2, Tao Tu1, Min Sun1, Dan Liu1, Di Lu1, Jing Feng1, Dongling Yang1,

Feng Liu2 & Xiyun Yan1

Dysregulation of Wnt signalling leads to developmental defects and diseases. Non-canonical

Wnt signalling via planar cell polarity proteins regulates cell migration and convergent

extension; however, the underlying mechanisms are poorly understood. Here we report

that Wnt5a uses CD146 as a receptor to regulate cell migration and zebrafish embryonic

convergent extension. CD146 binds to Wnt5a with the high affinity required for Wnt5a-

induced activation of Dishevelled (Dvl) and c-jun amino-terminal kinase (JNK). The

interaction between CD146 and Dvl2 is enhanced on Wnt5a treatment. Mutation of the

Dvl2-binding region impairs its ability to activate JNK, promote cell migration and facilitate

the formation of cell protrusions. Knockdown of Dvls impairs CD146-induced cell migration.

Interestingly, CD146 inhibits canonical Wnt signalling by promoting b-catenin degradation.

Our results suggest a model in which CD146 acts as a functional Wnt5a receptor in regulating

cell migration and convergent extension, turning off the canonical Wnt signalling branch.
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E
xtensive cell movements occur during the embryonic
development of vertebrates. Cell migration allows different
types of cells to find their proper positions in which they

can function appropriately. Convergent extension (CE) is the
main driving force in shaping the dorsal body axis, driving
involution and in leading to the asymmetric closure of the
blastopore and the formation of an elongated body1. These
processes are tightly regulated by conserved signalling pathways
such as Wnt, bone morphogenic proteins and Hedgehog (Hh)
signalling pathway2,3. Dysregulation of these signalling pathways
may trigger developmental defects or diseases.

The Wnt family is a large family of protein ligands that affect
various processes such as embryonic patterning, cell polarity
formation, cell motility and cell fate specification. Wnt signalling
is also involved in the homoeostasis and self-renewal of stem cells
as well as in tumorigenesis4. Wnt signalling pathways are
classified according to the stability of cytoplasmic b-catenin5

into canonical and non-canonical pathways. Canonical Wnt
ligands, such as Wnt1 and Wnt8, bind to the receptor Frizzled
(Fz) and co-receptors LRP5/6 to recruit Dishevelled (Dvls) and
Axin and subsequently disrupt the b-catenin degradation
complex. The stabilized b-catenin then translocates into the
nucleus to regulate the expression of the target genes of the co-
activator of T cell factor (TCF/Lef) (ref. 6).

Wnt5a-activated signalling is ascribed to non-canonical Wnt
signalling, which is further divided into several branches such as
Wnt/planar cell polarity (PCP), Wnt/Ror2 and Wnt/Ca2þ
signalling. Wnt/PCP signalling is the best defined of these
branches. Polarity or PCP is a fundamental property of many
cells and has critical roles in regulating CE during vertebrate
gastrulation, orientation of bird feathers and mammal hair as well
as in the polarization of inner ear hair cells that is essential for
hearing and balance7. Molecular and genetic studies have
indicated that the Wnt receptor Fz is important in the PCP
pathway. Fz relays Wnt signalling to a cytoplasmic scaffold
protein Dvl, and then activates small GTPase and c-jun amino-
terminal kinase (JNK), finally modulating cytoskeleton
rearrangement8. In addition to Fz, several other receptors,
including Ror2, Flamingo and Ryk, are involved in the non-
canonical Wnt pathway7,9. In some cases, depending on the
receptor context, non-canonical Wnt ligands or receptors such as
Wnt5a or Ror2 can inhibit canonical Wnt signalling10,11.

CD146 is an adhesion molecule that belongs to a subgroup of
the immunoglobulin (Ig) superfamily and consists of a character-
istic V-V-C2-C2-C2 Ig-like extracellular domain (ECD) structure, a
transmembrane domain and a short cytoplasmic region12. CD146
was first identified as a marker for melanoma progression13. Later
on, CD146 was also identified as a factor in angiogenesis, and
tumour cell invasion and migration14–17. We have previously
reported that CD146 regulates cell migration through cytoskeleton
proteins by activating the small GTPase RhoA18. However, the
underlying mechanism of CD146 has remained elusive.

In this study, we show that CD146 interacts with Wnt5a and
acts as a Wnt5a receptor in regulating the migration and polarity
of mammalian cells, and the CE of gastrulation in zebrafish. To
fulfill these functions, CD146 activates non-canonical Wnt
signalling via a Wnt/Dvl/JNK cascade and inhibits canonical
Wnt signalling by promoting b-catenin degradation.

Results
CD146 binds to Wnt5a. To identify potential binding partners of
CD146, we employed a yeast two-hybrid assay. Our screen
identified Wnt5a as a binding protein of CD146. To examine the
functional interaction between Wnt5a and CD146, we next per-
formed a cell surface-binding assay using HEK293T cells19. Cells

were transfected with Flag-tagged CD146, Fz5 or Fz7 (two well-
known Wnt receptors as positive controls) and an empty vector
as a negative control20. Results showed that after incubation with
Myc-Wnt5a conditional medium (CM), Wnt5a bound to cells
transfected with CD146, Fz5 or Fz7, whereas no Wnt5a binding
was detected for empty vector-transfected cells (Fig. 1a). To
evaluate whether the binding between Wnt5a and CD146 is
direct, we performed pull-down assays by incubating
recombinant Wnt5a protein with the purified Fc-fused CD146
ECD (Fc-CD146/ECD), Fc-fused Fz5 ECD (Fc-Fz5/ECD, positive
control) and Fc (negative control). After sedimentation with
protein A beads, Wnt5a was detected in both Fc-CD146/ECD and
Fc-Fz5/ECD precipitates but not in the Fc control (Fig. 1b),
indicating that CD146 binds Wnt5a directly.

To measure binding affinity between Wnt5a and CD146, we
then added different concentrations of Myc-Wnt5a from the CM
to 96-well plates coated with Fc-CD146-ECD, Fc-Fz5-ECD or Fc.
Enzyme-linked immunosorbent assay results showed that absorp-
tion values at 450 nm increased with increasing Wnt5a concen-
tration. The binding affinity was high, that is, 10� 9 M (Fig. 1c).
The binding activity between Wnt5a and CD146 was comparable
to that between Wnt5a and its known receptor Fz5, while no
binding was observed with Fc alone.

To further validate the interaction between Wnt5a and CD146,
Myc-Wnt5a and Flag-CD146 were co-expressed transiently in
HEK293T cells. The interaction between CD146 and Wnt5a was
verified by co-immunoprecipitation (co-IP; Supplementary
Fig. S1a). To determine the region of CD146 involved in binding
to Wnt5a, we generated a series of N-terminal Flag-tagged CD146
mutants with different Ig-like region truncations (Fig. 1e). Co-IP
assay showed that there is no interaction between Wnt5a and
(322-646aa/CD146) mutant, indicating that the third Ig-like
region of CD146 is critical for its binding to Wnt5a (Fig. 1d).
Further, the co-localization of CD146 and Wnt5a at the cell
surface was demonstrated by immunostaining. However, no
overlapping expression between Wnt5a and the (322-646aa/
CD146) mutant was detected, which is consistent with co-IP
results (Supplementary Fig. S1b). To clarify whether CD146 also
binds to other Wnt ligands, Myc-Wnt1 or Myc-Wnt3a plasmids
were co-expressed with CD146 in HEK293T cells. Co-IP results
showed that CD146 binds to Wnt1 or Wnt3a, which is similar to
non-canonical Wnt receptor Ror2 (Supplementary Fig. S2a). Our
immunostaining results suggest that CD146 co-localizes with
Wnt1 or Wnt3a at the cell surface (Supplementary Fig. S2b).
CD146 binds to Wnt3a with high affinity, which is comparable to
that of Fz5 (Supplementary Fig. S3).Taken together, these results
suggest that CD146 is a potential receptor of Wnt.

CD146 is essential for Wnt5a-induced cell migration. Wnt5a/
Dvl/JNK signalling is the best-studied non-canonical Wnt branch
in regulating cell motility. To analyse the role of CD146 in
Wnt5a-induced cell motility, CD146-specific short interfering
RNAs (siRNAs) was employed to knock down endogenous
CD146 in human umbilical vein endothelial cells (HUVECs)
(Fig. 2a). With depletion of CD146, the motility of HUVECs
decreased was very limited compared with that of HUVECs
transfected with control siRNA. Wnt5a induced migration of
significantly higher numbers of cells compared with the non-
treated group, whereas knockdown of endogenous CD146 largely
impaired Wnt5a-induced cell migration. To validate that the loss
of CD146 impairs Wnt5a-induced cell migration, we introduced
an siRNA-resistant form of CD146 back into CD146-depleted
HUVECs. Cell migration results indicated that addition of CD146
rescued Wnt5a-induced cell motility (Fig. 2a), confirming that
CD146 is crucial for Wnt5a-induced cell motility.
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CD146 is essential for Wnt5a-induced JNK activity. To further
investigate the function of CD146 in relaying Wnt5a-induced
signalling, we examined the phosphorylation of JNK, the down-
stream effector of Wnt5a-induced non-canonical Wnt signalling.
Wnt5a activated JNK strongly and in a time-dependent manner,
with activity reaching a peak at 1 h after treatment, whereas Wnt1
hardly had any effect (Supplementary Fig. S4a). However, on
depletion of endogenous CD146, Wnt5a-activated JNK was
suppressed (Fig. 2b). Moreover, the blocking antibodies (AA1 and
AA2), which recognize the ECD of CD146 effectively inhibited
Wnt5a-induced cell migration and JNK activation (Fig. 2c,d),
probably through interfering with the interaction between CD146
and Wnt5a (Supplementary Fig. S5). However, AA1/AA2 does
affect cell adhesion (Supplementary Fig. S6a). Altogether, these
results suggest that CD146 is essential for non-canonical Wnt5a-
activated Wnt signalling.

CD146 promotes cell migration by activating JNK. CD146 has
been identified as an inducer of cell migration. As CD146 binds
Wnt5a with high affinity and is essential for Wnt5a-induced JNK
activation and cell migration, we then evaluated whether CD146
can promote cell migration by activating JNK. When CD146 was
expressed in HEK293T cells, JNK activity increased to a level
comparable to that in Dvl2-transfected cells (Fig. 2e). To further
investigate whether CD146 can activate non-canonical Wnt
signalling JNK alone, the expression levels of Wnt5a and several
Wnt receptors were examined by reverse transcriptase–PCR in
HEK293T and HUVECs. Our results show that Wnt5a and Wnt

receptors were expressed in those cells as reported21–23.
Subsequently, specific siRNAs were employed to knock down
the different Wnt receptors in HEK293T cells (Supplementary
Fig. S7b, Supplementary Tables S1 and S2). CD146 activated JNK
efficiently in the absence of all those receptors except Fz4, which
is involved in regulating Wnt/PCP signalling (Supplementary
Fig. S7a)24. Knockdown of CD146 does not affect Fz5, Fz7 and
Ror2-activated JNK (Supplementary Fig. S8). Further, modulating
the expression of CD146 does not alter the expression and
subcellular localization of other Wnt4 receptors, such as Fz5, Fz7
and Ror2 in HEK293T cells (Supplementary Figs S9 and S10)
Thus, our results showed that CD146 activation of non-canonical
Wnt signalling may work through cooperation with Fz4, although
the mechanistic details involved will require further investigation.

Further, we generated a HEK293T cell line that constitutively
expressed CD146 (CD146-HEK293T). Cell motility assays
indicated that ectopic expression of CD146 significantly promotes
cell migration in HEK293T cells compared with mock cells
(Fig. 2f) Immunoblotting showed that JNK phosphorylation was
upregulated in CD146-HEK293T cells compared with HEK293T
cells transfected with an empty vector (Mock; Supplementary Fig.
S4b). To further investigate the role of JNK activity in CD146-
promoted cell migration, CD146-HEK293T cells were pretreated
with JNK inhibitor (10 mm SP600125) for 1 h. The motility of
CD146-HEK293T cells was largely attenuated by the inhibition of
JNK activity while mock-treated (dimethyl sulphoxide) cells
migrated normally (Fig. 2f). These results suggest that CD146
promotes cell migration by activating JNK in the non-canonical
Wnt signalling pathway.
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CD146 binds to Dvl2 and regulates the activation of Dvl2. Dvl2
is the scaffold protein that relays Wnt signalling by bridging
receptor and adaptor proteins in both canonical and non-cano-
nical Wnt pathways25,26. As CD146 was required for the
activation of JNK by Wnt5a, we hypothesized that CD146 may
relay Wnt signalling through Dvl. Co-IP indicated that CD146
physically interacts with Dvl2 (Fig. 3a). Interestingly, we found
that the interaction between CD146 and Dvl2 was significantly
enhanced in the presence of Wnt5a (Fig. 3b). Membrane
translocation is critical for Dvl function in non-canonical Wnt
signalling27. Immunostaining showed that the expression of Flag-
tagged Dvl2 alone gave a punctate pattern and was evenly
distributed in the cytoplasm. Partial co-localization of CD146 and
Dvl2 on the cell membrane was detected in cells transfected with
CD146 and Dvl2. Moreover, CD146 began to internalize and its

co-internalization with Dvl2 was enhanced on Wnt5a treatment
(Supplementary Fig. S11).

Dvl phosphorylation is essential for Wnt signalling transduc-
tion. Phosphorylation of Dvl2 was increased markedly by Wnt5a
(Fig. 3b). To further verify that CD146 is the receptor for Wnt5a
in signalling transduction, we evaluated the phosphorylation of
Dvl2 in HUVECs by knocking down CD146. Phosphorylated
Dvl2 with larger molecular weight was enhanced on Wnt5a
treatment (Fig. 3c). However, the phosphorylation of Dvl2 was
blocked when CD146 was depleted using CD146-specific siRNA
(Fig. 3c). To examine the role of Dvl2 in CD146-induced cell
migration, different isoforms of Dvl were knocked down in
CD146-HEK293T cells (Fig. 3e). Interestingly, knocking down
Dvl2 or Dvl3 separately did not affect cell motility, but
simultaneous depletion of both Dvl2 and Dvl3 significantly
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Figure 2 | CD146 is essential for Wnt5a-induced endothelial cell migration and JNK activity. (a) Knockdown of CD146 blocks Wnt5a-induced HUVEC
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and the expression level of siRNA-resistant form of CD146 were determined by western blotting, and migrated cells were stained and counted. Data are

presented as mean values±s.d. of three experiments. Significant difference was determined by Student’s t-test (*Po0.05; **Po0.01). (b) Knockdown of

CD146 inhibits Wnt5a-induced JNK activity. HUVECs were transfected with CD146 siRNA or control siRNA for 48 h. Transfected cells were treated

with Wnt5a or control CM for a further 1 h, and the phosphorylation of JNK was assessed by western blotting. b-actin was used as a loading control.

(c) CD146-specific antibodies AA1 and AA2 block Wnt5a-induced HUVECs migration. 6,000 cells were pre-incubated with 50 mg ml� 1 mIgG, AA1 or

AA2 for 1 h followed by addition of Wnt5a CM. Cells were cultured for 10 h, and migrated cells were stained and counted. Data are presented
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HEK293T cells were collected with ectopic expressed CD146 at 36 h and cell lysate was subjected to western blotting. JNK activity was demonstrated

with antibody against p-JNK. Dvl2 and empty vector-transfected cells were used as positive and negative controls, respectively. b-actin was used as a

loading control. (f) JNK inhibitor blocks CD146-promoted cell migration. CD146-HEK293T cells or mock cells seeded in 8 mm transwell plates were

incubated with 10 mm JNK inhibitor SP600125or dimethyl sulphoxide. Migrated cells were stained and counted (scale bar, 150 mm). Data are presented

as mean values±s.d. of three experiments. Significant difference was determined by Student’s t-test (*Po0.05; **Po0.01).
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impaired cell motility compared with the control siRNA group
(Fig. 3d), suggesting redundancy in the function of Dvl2 and Dvl3
in Wnt5a–CD146-regulated cell motility. Altogether, these results
strongly suggest that CD146 is the receptor of Wnt5a and that it
relays Wnt5a signalling through Dvl.

The Dvl2-binding region is required for CD146-activating
JNK. To determine the region of CD146 that interacts with Dvl2,
we generated a series of constructs truncated at the carboxy ter-
minus of CD146 (Fig. 3g). Co-IP results showed that the cyto-
plasmic region (14–26 amino acids) of CD146 is critical for its
interaction with Dvl2 (Fig. 3f,g). Mutant CD146-RF14 (CD146
with 14 amino acids of the intracellular region remaining) lost its
capacity to interact with Dvl2, whereas RF26 (with 26 amino
acids of the intracellular region remaining) was still able to bind
Dvl2. Binding between RF26 and Dvl2 was even stronger than
that between wild-type (WT) CD146 and Dvl2, suggesting that
the 14–26 amino acid intracellular region of CD146 is critical for
its interaction with Dvl2.

As CD146 regulates cell motility by activating non-canonical
Wnt/Dvl/JNK signalling (Fig. 2d,e), we evaluated the signalling
induction and biological functions of the above mutants (Fig. 3g).
JNK was highly activated by WT CD146 and the positive control
Dvl2. RF26 was able to interact with Dvl2, retaining its capacity to
activate JNK. Other truncated forms, such as RF14 or the ECD of
CD146 with a mutated Dvl2-binding region, failed to activate
JNK (Fig. 4a).

CD146–Dvl2 interaction regulates cell motility. We next
evaluated the ability of these mutants to induce cell migration by

transiently transfecting each mutant into HEK293T cells. We
found that WT CD146 promoted significantly more cells to
migrate, comparable to Ror2. Both RF14 and the ECD of CD146,
which have lost their Dvl2-binding ability, failed to mediate cell
migration, indicating that binding Dvl2 is critical for CD146-
induced cell migration (Fig. 4b,c). Together, these results indicate
that the activation of non-canonical Wnt JNK signalling and
promotion of cell migration by CD146 are dependent on the
interaction between Dvl2 and CD146.

CD146 promotes the formation of cell protrusions. To explore
whether the subcellular localization of CD146 or Wnt4 receptors,
such as Ror2, Fz5 or Fz7, was altered in the presence/absence of
Wnt5a, immunostaining assays were performed. Results suggest
that in the presence of Wnt5a, the subcellular localization of
CD146 is altered. CD146 was accumulated on the cell membrane,
in a specific region, thus displaying a polarized enrichment of
actin filaments as reported28. However, alteration in localization
of Ror2, Fz5 or Fz7 was not observed in the presence of Wnt5a
(Supplementary Fig. S12).

Non-canonical Wnt signalling mainly regulates tissue cell
migration and cell polarity. Cell polarity characterized by the
protrusion of F-actin is the main driving force for cell migration8.
Myc-tagged CD146 (Myc-CD146) was used to transfect
HEK293T, MCF-7 and SW480 cell lines. Surprisingly, ectopic
expression of CD146 alone without Wnt5a stimulation promoted
filopodia formation, as demonstrated by 488-phalloidin staining
(Fig. 4d). Imaging data showed that CD146, like Ror2, is localized
at the protrusion and promotes the formation of cell protrusions.
Mutant RF14 is still localized with F-actin, but barely promoted
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collected and assayed by Co-IP. (c) Knockdown of CD146 blocks Wnt5a-induced Dvl2 phosphorylation; CD146-specific siRNA was used to knockdown

endogenous CD146 in HUVECs. Wnt5a CM or control CM was added to induce Dvl2 phosphorylation. Bands of phosphorylated Dvl2 with larger molecular

weights were detected by western blotting. b-actin was used as a loading control. (d) Knockdown of both Dvl2 and Dvl3 inhibits CD146-induced

cell migration. The numbers of migrated cells were determined as described in the Methods. Data are presented as mean values±s.d. of three

experiments. Significant difference was determined by Student’s t-test (*Po0.05; **Po0.01). (e) Knockdown efficiency of Dvl2 and Dvl3 in CD146-

HEK293T cells. (f) The 14–26 amino-acid region of the intracellular domain of CD146 is required for its interaction with Dvl2. A series of C-terminal

truncations of CD146 at the intracellular domain were transfected with Dvl2. Co-IP was performed as described in the Methods. (g) Schematic diagram

of the CD146 truncated forms and their interaction with Dvl2.
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the formation of cell protrusions (Fig. 4d), whereas the ECD of
CD146 was not localized with F-actin and failed to promote the
formation of cell protrusions. RF26 seems to be less able to
promote cell migration and formation of cell protrusion than WT
CD146 (Fig. 4b,d). It might be due to either the lack of the deleted
region or a conformational change that is involved in the function
of CD 146 on cell migration and protrusion. These results suggest
that CD146 promotion of the formation of cell protrusions is
largely dependent on its binding of Dvl29, consistent with
previous results showing that CD146-mediated cell migration
and JNK activity are also Dvl binding-dependent.

CD146 regulates CE movement during zebrafish gastrulation.
To further investigate the role of CD146 in regulating cell
migration, we used zebrafish embryos to explore the role of
CD146 during embryo gastrulation when cells undergo extensive
CE movement. CD146 is maternally expressed from the one-cell
stage and ubiquitously expressed until bud stage as demonstrated
by whole-mount in situ hybridization (WISH; Supplementary
Fig. S13). CD146 was expressed in somites and lateral mesoderm
at the 10- and 18-somite stages and in vascular endothelial cells at
24 hours post fertilization (hpf; Supplementary Fig. S13). We
designed a translation-blocking morpholino oligonucleotide
(MO) against CD146, and found that expression of CD146, as
detected by western blotting, was efficiently suppressed (Fig. 5c).

Approximately 95% of embryos (n450) injected with 50 pg
CD146 messenger RNA or 4 ng MO, like Wnt5a-injected
embryos, exhibited an increased angle between their anterior and
posterior ends, and widened notochord or irregular somites
(Fig. 5a,b). These phenotypes are commonly associated with
gastrulation defects caused by impaired CE and PCP signalling.
We next examined the expression pattern of CE movement
marker genes, including hgg, dlx3, ntl and myoD (Fig. 5b).
Compared with control embryos, the expression patterns of these
genes were altered in embryos injected with either CD146 MO or
mRNA. Interestingly, gsc, a neuroectoderm marker, showed a
normal expression pattern, indicating that cell fate had not been
changed.

To confirm that the phenotype caused by CD146-MO was
specific, we co-injected CD146 MO with N-terminal Myc-CD146
mRNA into zebrafish embryos at the one-cell stage. Both
phenotype and expression of CE movement markers in MO-
injected embryos were rescued by co-injection with Myc-CD146
mRNA (Fig. 5a,b). In addition, the phosphorylation of JNK2, a
marker of the Wnt/PCP pathway during CE movement, was
suppressed in embryos in which CD146 was knocked down
(Fig. 5c). These data are consistent with our observations in
mammalian cells.

To further clarify whether CD146 regulates CE movement cell
autonomously, we performed cell transplantation experiments.
Lateral mesendodermal cells from the lateral blastoderm margin
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of WT, CD146 MO, Myc-CD146 and Wnt5a-mRNA-injected
embryos were transplanted into the corresponding regions of WT
recipients at the shield stage. After gastrulation, cells donated
from WT embryos migrated to the dorsal side, while this
convergence movement was delayed in CD146-deficient, CD146
and Wnt5a-overexpressing donor cells (Fig. 5d). We then
examined extension movements by transplanting axial mesendo-
dermal cells from the donor embryos into the shield of WT
recipients. Compared with controls, CD146-deficient, CD146 and
Wnt5a-overexpressing donor cells showed blocked or delayed
extension movements in WT recipients. Taken together, these
results demonstrate that CD146 regulates CE movements in a
cell-autonomous manner.

CD146 inhibits canonical Wnt signalling at b-catenin level. To
analyse the role of CD146 in regulating canonical Wnt signalling,
we employed a TCF transcription activity assay30. Our results
indicated that CD146 inhibits canonical Wnt signalling in a dose-

dependent manner in HEK293T cells (Fig. 6a, Supplementary
Fig. S14a). Conversely, knockdown of CD146 in CD146-
HEK293T significantly enhanced canonical Wnt signalling
(Fig. 6b). To investigate at which step CD146 exerts its
inhibitory effect in this pathway, various doses of CD146 were
co-transfected with different components of the canonical Wnt
pathway. Results showed that CD146 not only inhibits receptor
(Fz8) and co-receptor (Lrp6)-activated canonical Wnt signalling
(Supplementary Fig. S14c,d), but also inhibits scaffold protein
Dvl2-activated canonical Wnt signalling in a dose-dependent
manner (Supplementary Fig. S14e). The mutant b-catenin/S37A
(Ser 37 was substituted by Ala) is a relatively stable form of
b-catenin31. CD146 inhibited WT b-catenin but not b-catenin/
S37A-activated Wnt signalling in a dose-dependent manner
(Fig. 6c). These results, therefore, strongly suggest that CD146
inhibits canonical Wnt signalling at the b-catenin level.

After receiving canonical Wnt signalling, b-catenin is stabilized
in the cytosol, and then translocates into the nucleus where it
binds to the promoter of TCF/Lef to regulate the expression of
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target genes. Further analysis indicated that CD146 promotes
native or Wnt1-activated b-catenin degradation in the cytosol,
(Supplementary Fig. S14b,f). This was verified by injecting CD146
mRNA into zebrafish embryos. Conversely, knockdown of
CD146 stabilizes b-catenin in embryos (Fig. 6d). As a
consequence, the expression of the target genes of b-catenin,
vent or boz, was upregulated in CD146 morphants. Conversely,
the expression of these genes was downregulated in embryos
injected with CD146 mRNA, as determined by in situ hybridiza-
tion (Fig. 6e). This negative correlation between CD146 and
b-catenin was also observed by examining the mRNA levels of
Axin, Vent and Vox, the target genes of b-catenin, in embryos
by real-time PCR (Fig. 6f). These results strongly suggest that
CD146 is a negative regulator of canonical Wnt signalling at the
b-catenin level.

Discussion
Non-canonical Wnt signalling has a pivotal role in regulating cell
motility, cell polarity and CE during embryo gastrulation. Here
we identified CD146 as a receptor of Wnt5a in the regulation of
non-canonical Wnt signalling. Knockdown of CD146 inhibits
Wnt5a-induced cell migration and JNK activity. Depletion of
CD146 with MO impairs CE in zebrafish, leading to gastrulation

defects in embryos. Further, CD146 relays Wnt5a signalling
through Dvls, as knockdown of CD146 blocks Wnt5a-induced
Dvl2 phosphorylation. Indeed, CD146 physically interacts with
Dvl2. Knockdown of Dvl2 and Dvl3 attenuates CD146-induced
cell migration. The 14–26 amino-acid region of the intracellular
domain of CD146 is important for their interaction. Interestingly,
CD146 also regulates canonical Wnt signalling by inhibiting its
signalling at the b-catenin level.

Although CD146 has been extensively studied in tumour
metastasis, invasion and angiogenesis, its ligand is still under
investigation16,32–34. As a non-canonical Wnt ligand, Wnt5a has
a critical role in regulating cell motility, cell polarity and CE
during embryo gastrulation. Polarized redistribution of CD146
has been reported in the regulation of cell migration and cell
polarity via recruitment of actin and myosin on Wnt5a treatment.
Here we provide evidence that CD146 is a non-canonical Wnt5a
receptor in the regulation of cell motility, cell polarity and CE
during zebrafish gastrulation. CD146 binds Wnt5a with high
affinity, comparable to that of the known Wnt receptor Fz5
(Fig. 1a–c). The subcellular localization of CD146 was altered in
the presence of Wnt5a, which accumulates in the cell membrane,
at a specific region that displays a polarized enrichment of actin
filaments (Supplementary Fig. S12)28. However, a change in
localization in the presence of Wnt5a has not been observed for
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Ror2, Fz5 or Fz7 (Supplementary Fig. S12). Similarly, localization
or expression levels of these Wnt receptors were not altered
when expression of CD146 was modulated (Supplementary
Figs S9 and S10). These results indicate that CD146 regulates
Wnt signalling without affecting the expression of other Wnt
receptors such as Ror2, Fz5 and Fz7.

Similar to most of the genes identified in the Wnt/PCP
pathway, knockdown of CD146 impairs cell motility and CE
movement during gastrulation35 (Figs 2a and 5a). The phenotype
of CD146 morphant embryos is similar to that of Wnt5a
morphants with wider and shorter notochord accompanying a
wider and disordered somites (Fig. 5a,b)36. These phenotypes
commonly result from impaired Wnt/PCP signalling in
association with gastrulation defects35.

Further analysis indicates that the third Ig-like region of
CD146 (236–321 amino acids) is required for Wnt5a binding
(Fig. 1d,e). The (322–646 amino acids/CD146) mutant can
efficiently rescue the phenotype and reduce the increased
canonical Wnt signalling in CD146 MO morphants
(Supplementary Fig. S15). However, we did not observe the
rescue effect in non-canonical Wnt signalling (Supplementary
Fig. S16). Cell adhesion assay indicates that the (322–646 amino
acids/CD146) mutant still exhibits strong cell adhesion activity
compared with that of full-length CD146, suggesting that Wnt5a
signalling is important for CD146 morphogenetic activity
(Supplementary Figs S6b and S16).

To clarify whether CD146 also binds other Wnt ligands, Wnt1
or Wnt3a were co-expressed with CD146 in HEK293T cell.
Results showed that CD146 binds to canonical Wnt ligands such
as Wnt1 and Wnt3a (Supplementary Fig. S2a,b). Similar to Ror2,
which binds to canonical Wnt ligands, CD146 mainly activates
non-canonical Wnt signalling. The specificity of Wnt signalling
might depend on the endogenous expression of individual ligands
or receptors in a cell context-dependent manner10. However,
how, when and where Wnt ligands use different receptors to
distinguish the canonical and non-canonical branches warrants
further investigation.

Among the different branches of the non-canonical Wnt
pathway, such as the Wnt/Dvl/JNK (PCP) pathway, Wnt/Ca2þ

and Wnt/Ror2 pathways, the PCP pathway is the best defined37.
CD146 activates JNK extensively in different cell types (Fig. 2e).
As a receptor of Wnt5a, CD146 is required for Wnt5a-activated
JNK signalling and cell migration. Knockdown of CD146
decreases the baseline level of p-JNK both in vitro and in vivo
(Figs 2b and 5c). On the other hand, CD146 alone may not fully
activate JNK, as knockdown of Fz4 impairs JNK activity
(Supplementary Fig. S7), suggesting that CD146 may cooperate
with other Wnt receptors in regulating non-canonical Wnt
signalling. Further, antibodies against the ECD of CD146 can
block Wnt5a-induced cell migration and JNK activity (Fig. 2c,d),
probably by interfering with the interaction between CD146 and
Wnt5a(Supplementary Fig. S5).Wnt5a may slightly inhibit cell
adhesion possibly through downregulation of the adhesion
molecule b-catenin and its target genes, such as E-cadherin
(Supplementary Fig. S6a)38. Moreover, JNK inhibitor SP600125
attenuates CD146-promoted cell motility (Fig. 2e). We have
previously reported that CD146 promotes melanoma cell
migration by activating small GTPase RhoA18. RhoA is an
important component of the non-canonical Wnt pathway located
downstream of Dvls. Accordingly, RhoA is critical for activating
JNK in the regulation of cell motility and the formation of cell
protrusions37.

As a scaffold protein in the Wnt pathway, Dvl functions in
both canonical and non-canonical Wnt pathways. Phosphoryla-
tion and membrane translocation are critical for Dvl function in
the non-canonical Wnt pathway. In the presence of the Wnt

ligand, Dvl is phosphorylated and recruited by its receptor to the
cell membrane, switching Wnt signalling from the canonical to
the PCP pathway39. Interactions between CD146 and Dvl2 and
the phosphorylated form of Dvl2 increase in the presence of
Wnt5a (Fig. 3b). Indeed, enhanced co-localization of CD146 and
Dvl2 at the cell membrane was observed under Wnt5a treatment
(Supplementary Fig. S11). Further analysis showed that the 14–26
amino-acid region of the intracellular domain is critical for
CD146 binding with Dvl2 (Fig. 3f). This region is also critical for
CD146 activation of JNK, promoting cell migration and the
formation of protrusions (Fig. 4a–d). In addition, knockdown of
Dvls attenuates CD146-promoted cell migration (Fig. 3d,e). Here
we have demonstrated that CD146 regulates non-canonical Wnt
signalling by activating JNK via Dvl to promote cell motility and
cell polarity.

We previously reported that CD146 regulates melanoma cell
migration by regulating the binding protein actin-linking ezrin-
radixin-moesin (ERM)18. Although ERM and Dvl both bind to
CD146 at its cytoplasmic tail, their interaction with CD146
displays different properties: first, ERM binds to the positively
charged region (KKGK) of CD146, whereas Dvl binds to a
different region close to the KKGK motif; second, the binding of
CD146 to ERM is constitutive. However, the binding of CD146 to
Dvl is very weak in absence of Wnt5a but is enhanced in the
presence of Wnt5a.

As a ligand of the non-canonical Wnt pathway, Wnt5a inhibits
canonical Wnt signalling in a receptor-dependent manner40.
Similarly, an inhibitory role of CD146 in canonical Wnt
signalling has been observed (Fig. 6). Accordingly, depletion of
CD146 enhanced Wnt1-activated TCF transcription (Fig. 6b).
The inhibitory effect of CD146 was observed at the b-catenin
level (Fig. 6c). Indeed, b-catenin protein was markedly
downregulated or upregulated by overexpression or knockdown
of CD146, respectively, both in vitro and in vivo (Fig. 6). As a
result, the target genes of b-catenin were upregulated or
downregulated by the knockdown or overexpression of CD146
in zebrafish embryos, respectively (Fig. 6e,f). Moreover, this
negative correlation between CD146 and b-catenin at the protein
level was also observed in different colon cancer cell lines
(Supplementary Fig. S17), implying the involvement of CD146 in
colon cancer. We have previously reported that CD146 induces
the epithelial–mesenchymal transition by downregulating the
expression of E-cadherin in breast cancer cell lines16. E-cadherin,
an adhesion molecule anchoring b-catenin to the cell membrane,
has been identified as a canonical Wnt target gene and is
positively regulated by Wnt41,42. In this study, we demonstrate
that CD146 is the negative regulator of canonical Wnt signalling.
CD146 may decrease the level of E-cadherin by downregulating
b-catenin. The balance between canonical and non-canonical
Wnt signalling is tightly controlled. Identification of the Wnt5a/
CD146 pathway in this study provides new insights for explaining
why the non-canonical ligand Wnt5a can inhibit canonical Wnt
signalling. However, the exact mechanism by which CD146
destabilizes b-catenin and inhibits canonical Wnt signalling still
needs further investigation.

Recently, several atypical adhesion molecules (Fat, Dachsous
and Flamingo) have been identified as non-canonical Wnt
receptors in the Wnt/Dvl/JNK pathway, which is involved in
regulating cell motility and cell polarity, indicating that adhesion
molecules have an important role in mediating the Wnt signalling
pathway43. However, whether these adhesion molecules and
CD146 have synergistic roles in regulating Wnt signalling remain
to be explored.

In summary, we have identified CD146 as a Wnt5a receptor
that simultaneously activates non-canonical Wnt signalling and
inhibits canonical Wnt signalling as depicted in Fig. 6g. Our
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results may help provide clearer understanding of the roles of
adhesion molecules in regulating the cell motility and cell polarity
that are essential in both normal development and tumour
pathogenesis. Our findings may also provide new markers for
cancer diagnosis and new targets for cancer treatment, especially
for metastatic tumours.

Methods
Antibodies and reagents. Anti-CD146 rabbit polyclonal antibody, monoclonal
antibodies AA1, AA2, AA3 and AA98 were generated in our laboratory44.
Anti-FLAG (F1804, 1:3,000) and anti-b-actin (AC15, 1:5,000) antibodies were from
Sigma-Aldrich (St Louis, MO, USA). Anti-Dvl3 antibody(sc-8027, 1:1,000) was
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-Dvl2 (#3216,
1:1,000), Anti-Myc (#2276, 1:5,000 for western, 1:500 for immunostaining), JNK
(#9252, 1:1,000), anti-b-catenin (#610514, 1:5,000) and p-JNK/SPARK (#4668,
1:1,000) antibodies were purchased from Cell Signaling (Danvers, MA, USA). Anti-
Ror2 (ab92379, 1:1,000), Fz7 (ab64636, 1:1,000) and Fz5 (ab14475, 1:1,000)
antibodies were obtained from Abcam. Fast red tablets were obtained from Roche
(Basel, Switzerland). Cell adhesion assay kit (extracellular matrix array) was
obtained from Cell BioLabs. Fc and Fc-CD146 were from Sino Biological, and
recombinant human Wnt5a were obtained from R&D Systems.

Plasmids and siRNA. Flag-CD146, Myc-CD146 and Myc-Wnt5a were generated
by PCR and cloned into N-terminal Flag or Myc-tagged PCS2-sp empty vectors
digesting with HindIII at N terminal and BglII at C terminal; Flag-hFz8, Flag-hFz5,
Flag-xFz7, Myc-hFz5, Myc-xFz7, Flag-hGSk3�, Flag-b-Catenin, Flag-b-Catenin-
S37A and luciferase reporter plasmids were kindly provided by Dr Wei Wu
(Tsinghua University). Different constructs for N-terminal-truncated CD146 were
generated by PCR and cloned into PCS2-sp-Flag with EcoRI at N terminal and
BglII at C terminal and verified by sequence.

Small interfering RNA (siRNA) targeting CD146, Dvl2, Dvl3, Ror2, Fz2,
Fz3, Fz4, Fz5, Fz6, Fz7 and control siRNA were synthesized by Invitrogen
(San Diego, CA, USA) using previously reported sequences as listed in
Supplementary Table S1 (refs 23,32,45,46).

Transfection and luciferase reporter assays. HEK293T, SW480, HUVEC and
HT-29 cells were plated in 10 cm dishes or six-well plates. Cells were transfected
with 50 nM siRNAs or plasmids using Fugene-6 transfection reagent (Roche).
HEK293T and HUVECs used in the luciferase reporter assay were seeded in
48-well plates and transfected in triplicate with plasmids or siRNAs together with
Super TOP-FLASH. pRL-TK was used as an internal control and luciferase activity
was determined as described30. The amount of plasmid used per well was as
follows: 15 ng of Super TOP-FLASH, 0.5 ng of pRL-TK, 10 ng of Lrp6, 10 ng
of Frizzled, 10 ng of Wnt1, 10 ng of Dvl, 10 ng of b-catenin or the mutant
b-catenin/S37A.

Cell surface-binding assay. Myc-Wnt5a was transfected into HEK293T cells for
48 h, and then the cell culture medium (Wnt5a CM) was collected and con-
centrated with Amicon-Ultra-15 filters (Millipore). CD146, Fz5, Fz7 or an empty
vector were transfected into HEK293T cells for 36 h and the cell surface-binding
assay was performed as described19.

Enzyme-linked immunosorbent assay-based binding curve. Fc (0.4 mg ml� 1),
Fc-CD146 or Fc-Fz5 was coated on 96-well plates overnight at 4 �C; 0.625–40 nM
of Wnt5a or Wnt3a (determined by western blotting) were then added into the Fc-,
CD146- or Fz5-coated wells and incubated for 3 h at room temperature. Mouse
anti-Myc primary antibody, horseradish peroxidase-conjugated goat-anti-mouse
secondary antibody and horseradish peroxidase substrate were then sequentially
added to the wells and incubated 1 h. Absorbance values were then read at
OD450 (ref. 47).

Co-IP assays and immunoblotting. For immunoprecipitation, cells in six-well
plates were lysed on ice with TNE buffer (10 mM Tris, pH 7.4, 150 mM NaCl, 0.5%
NP-40, 1 mM EDTA) supplemented with 2 mM sodium vanadate, 25 mM sodium
fluoride and a protease inhibitor cocktail 40 h post-transfection. FLAG- or Myc-
tagged proteins were recovered using anti-FLAG agarose beads (M2; Sigma) or
protein A/G plus CD146 antibody AA1, respectively. For the pull-down assay, Fc-
CD146/ECD, Fc-Fz5/ECD or Fc (100 ng ml� 1 each) was conjugated with protein
A beads and incubated with recombinant Wnt5a for 1 h. Bound proteins were
eluted with loading buffer and analysed by immunoblotting. Full scans of western
blots are supplied in Supplementary Fig. S18.

For cell fractionation, the cell membrane and cytosol were separated as
described48. The resultant supernatant was taken as the cytosol fraction and
analysed by immunoblotting. Immunoblotting was performed as described
previously with antibodies against FLAG, Myc, b-catenin, Dvl2, Dvl3 JNK, p-JNK
and mouse anti-CD146 antibody AA1 or rabbit anti-CD146 antibody32.

Immunostaining. For immunofluorescence, cells seeded on coverslips in six-well
plates were fixed with 4% paraformaldehyde and permeabilized with 0.2% Triton
X-100 in PBS buffer, and then blocked with PBS containing 3% BSA before
addition of a primary antibody and secondary antibody (goat anti-rabbit-Alexa
Fluor 488 or donkey anti-mouse-Alexa Fluor 568).

Cell migration and adhesion assays. Cell migration capacity was evaluated using
the Transwell system32. In brief, 5,000 serum-starved cells in 100ml of serum-free
RPMI-1640 were added into the upper chamber and cultured with Wnt5a CM or
control CM. Cells were allowed to migrate for 10 h and migrated cells were then
counted. Cell adhesion ability was evaluated with the Cytoselect Cell adhesion
assay Kit from Cell BioLabs. In brief, 106 of cells in serum-free RPMI-1640 were
added onto the extracellular matrix protein-coated wells with 200 ng ml� 1 Wnt5a
or vehicle. After growing for 1 h, the adherent cells were captured and unbound
cells were removed with consecutive washes. The adhesion cells were lysed and
subsequently detected with CyQuant GR Dye. Experiments were carried out in
triplicate.

Fish strains. Zebrafish embryos were obtained from adult Tubingen strain fish by
natural spawning. Embryos were raised and maintained at 28.5 �C in system water
and staged morphologically49.

Morpholinos and mRNA synthesis. CD146 MO (50-AGCAGTGCGGTGTAGG
TCATTTCTC-30) and CD146 mismatch MO (50-AGGCGTGCGGAGTAGCTC
ATTTGTC-30) were obtained from GeneTools (Philomath, OR) and prepared as
1 mM stock solutions using double-distilled H2O. For CD146 knockdown experi-
ments, 4 ng of CD146 MO was injected per embryo and embryos injected with
CD146 mismatch MO at the same dosage were used as controls.

hCD146 or xWnt5a mRNAs for injection were synthesized in vitro using an
mMessage mMachine SP6 kit (Ambion) according to the manufacturer’s
instructions. 50 pg of Myc-hCD146 mRNA, 50 pg of Wnt5a mRNA or 5 ng of
CD146 MO per embryo was injected into zebrafish embryos at the
one-cell stage.

Whole-mount in situ hybridization. WISH of zebrafish embryos was performed
as described previously using the following probes: gsc, hgg, dlx3, ntl, myoD, vent
and boz49.

Quantitative reverse transcriptase–PCR. Total RNA was extracted from mam-
malian cells (HEK293T or HUVECs) or embryos (100 embryos were pooled for
each sample) at the shield stage (6 hpf) using TriReagent (Tiangen, Beijing) and
then reversely transcribed. The complementary DNAs were diluted five times to be
used as templates. PCR was performed to amplify Wnt receptors with primers
listed in Supplementary Table S2 or quantitative PCR was performed using
the GoTaq qPCR Master Mix (Promega) on the Bio-Rad CFX96 Real-Time PCR
system with primers against zebrafish Vent, Axin2 or Vox49 listed in
Supplementary Table S3.

Cell transplantation. Donor embryos in the cell-autonomous assay were first co-
injected at the one-cell stage with 1 nl of rhodamine-dextran (molecular weight
70,000WM; Molecular Probes) together with 4 ng of CD146 MO or 50 pg of CD146
or Wnt5a mRNA. Lateral or axial mesendodermal cells (30–50 cells) from the
donor embryos were transplanted into the lateral margin or embryonic shield of
WT hosts of the same developmental stage (shield stage, about 6 hpf). Images were
obtained at 10 hpf under a microscope.

Statistical analysis. Statistical significance was calculated using Prism (GraphPad
Software). All experiments were performed in triplicate. Data are shown as mean
values±s.d. Statistical differences were determined with unpaired Student t-tests
and P-values o0.05 were considered to be statistically significant.
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