CD146 is a potential marker for the diagnosis of malignancy in cervical and endometrial cancer

HAOFENG ZHANG1, JUN ZHANG1, ZHAOQING WANG2, DI LU2, JING FENG2, DONGLING YANG2, XIUQIN CHEN3 and XIYUN YAN2

1Department of Obstetrics and Gynecology, Capital Medical University Affiliated Beijing Anzhen Hospital, Institute of Beijing Heart, Lung and Blood Vessel Diseases, Chaoyang, Beijing 100029; 2Protein and Peptide Pharmaceutical Laboratory, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing 100101; 3Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, P.R. China

DOI: 10.3892/ol_xxxxxxxx

Abstract. Cluster of differentiation 146 (CD146) is an endothelial cell adhesion molecule which is overexpressed in various types of malignant cancer, including ovarian cancer. However, whether CD146 is overexpressed in another two types of gynecological cancer, cervical cancer and endometrial cancer, remains unclear. In the present study, we showed that CD146 expression levels were higher in cells from cervical cancer and endometrial cancer compared with their corresponding normal tissues, using anti-CD146 mouse antibody AA4 (mAb AA4) and that mAb AA4 exhibited a high performance for specificity, sensitivity and positive predictive value in the detection of these two types of cancer. CD146 expression was positively and significantly correlated with the pathological subtype of cervical cancer and with the histological grade and depth of myometrial invasion in endometrial cancer. In addition, we confirmed that CD146 is present in the majority of blood vessels in cervical and endometrial cancer, suggesting that CD146 may be actively implicated in the metastasis of cervical and endometrial cancer via the vascular system. Thus, this study provides insights for further development of anti-CD146 immunotherapy with other traditional chemo- or radiotherapy treatments may be a promising approach against cervical and endometrial cancer.

Introduction

Cluster of differentiation 146 (CD146) is a cell adhesion molecule (CAM) which belongs to the immunoglobulin superfamily (IgSF) (1). Human CD146 has previously been designated several synonyms, including MUC18 (1,2), A32 antigen (3,4), S-Endo-1 (5), melanoma CAM (MCAM or Mel-CAM) (4,6,7), metastasis CAM (MET-CAM) (8) and hemopoietic CAM (HEMCAM) (9). The avian homolog of CD146 has been named gicerin (10). CD146 was originally identified as a marker for melanoma (MCAM), due to its overexpression in metastatic lesions and advanced primary tumors, yet not in benign lesions (1,3,4). Increasing amounts of evidence have demonstrated that CD146 is overexpressed in a variety of carcinomas, in addition to melanomas (11-14). As a result of this characteristic, CD146 has attracted attention and is considered to be a potential marker for tumor diagnosis, prognosis and treatment. The majority of studies support the theory that CD146 promotes tumor growth, angiogenesis and metastasis (15), therefore, CD146 is a promising target for tumor therapy (16,17).

CD146 is a 113-kDa integral membrane glycoprotein, whose sequence of amino acids consists of a signal peptide, an extracellular fragment structure of five immunoglobulin-like...
domains (V-V-C2-C2-C2), a transmembrane region and a
short cytoplasmic tail (2,18). Our laboratory raised an array of
mouse antibodies (mAbs) against CD146, among which AA4
recognizes the epitope located at the second IgC2 domain (19).
AA4 is able to specifically detect CD146 in tumor specimens
from various organs, including breast tumors (14). CD146
overexpression has been revealed in ovarian cancer and may
be a marker for poor prognosis in ovarian cancer patients (11).
Thus, CD146 Abs may be a useful marker in the detection of
gynecological malignancies. However, CD146 expression and
detection in two other types of gynecological cancer, cervical
and endometrial cancer, has not been investigated.

This study aimed to evaluate the distribution of CD146
in cervical and endometrial cancer; the diagnostic use of
CD146 Abs in cervical and endometrial cancer was evaluated
by calculating the correlation between clinical pathological
parameters and the extent of immunohistochemical CD146
expression in tumor tissues.

Materials and methods

Antibody and reagents. The anti-CD146 monoclonal antibody
AA4 was generated in the Protein and Peptide Pharmaceutical
Laboratory (Chinese Academy of Sciences-University of Tokyo)
Joint Laboratory of Structural Virology and Immunology,
Beijing, China). A CD31-specific antibody was purchased from
Abcam (Cambridge, MA, USA). Biotin-conjugated secondary
antibodies (goat anti-rabbit or -mouse) and HRP-conjugated
streptavidin were purchased from Dianova (Rodeo, CA, USA).
Goat anti-rabbit Alexa Fluor® 488 and goat anti-mouse Alexa
Fluor® 555 were purchased from Invitrogen (San Diego, CA,
USA). DAPI was purchased from Roche (Indianapolis, IN,
USA). Normal goat serum and a 3,3'-diaminobenzidine (DAB)
staining kit were purchased from ZSGB-BIO (China).

Ethics statement. Informed consent was obtained from all
participants in this study. All procedures have been approved
by the Ethics Committee of Capital Medical University
Affiliated Beijing Anzhen Hospital, Institute of Beijing Heart,
Lung and Blood Vessel Diseases and Institute of Biophysics,
Chinese Academy of Sciences.

Clinical sampling. Malignant specimens were obtained
from patients with gynecological cancer, including cervical
carcinoma and endometrial carcinoma, by surgical excision,
in Anzhen Hospital (Beijing, China) and the Fifth Affiliated
Hospital of Zhengzhou University (Zhengzhou, Henan, China).
Normal uterine cervical tissue and normal endometrium were
collected by hysterectomy in non-cancer patients with multiple
uterine leiomyomas or adenomyosis, respectively. None of the
patients had received preoperative chemotherapy, radiotherapy
or hormone therapy or suffered with malignant tumors, other
than the gynecological cancer examined in this investigation.

Immunohistochemistry. This assay was conducted according
to classically established methods. Briefly, tissue sections
were fixed with formalin and embedded with paraffin. Tissue
sections were then cut (5 µm) and stained with hematoxylin
eosin (H&E) solution. Following deparaffinization,
tissue sections were stained with CD146- or CD32-specific
antibody, then with biotin-conjugated secondary antibodies
(1:1000), followed by HRP-conjugated streptavidin (Dianova).
The sections were counterstained with hematoxylin to visual-
alize the nuclei.

Double-staining immunohistofluorescence analysis. Sections
(5 µm) were fixed in 4% paraformaldehyde (pH 7.4) for 15 min
at room temperature. According to the general procedure, which
included permeabilization and blocking, the slides were
co-incubated with antibodies for CD146 (mAb) and CD31
(rAb, rabbit Ab) overnight at 4°C. After washing with PBS
three times, the slides were incubated with a mixture of the two
secondary antibodies (anti-rabbit Alexa Fluor® 488 and anti-
mouse Alexa Fluor® 555) in the dark for 1 h. The nuclei were
stained with DAPI. Fluorescent images were acquired using a
confocal microscope (FV1000, Olympus, Tokyo, Japan).

Statistical analysis. Statistical analysis was conducted using
SPSS software. The significant differences between the groups
and the association between CD146 expression and different
clinicopathological parameters were evaluated using the
Chi-square test or Fisher's exact test. P<0.05 was considered to
indicate a statistically significant difference.

Results

Classification of cervical cancer specimens into categories.
The collected specimens were divided into normal tissue and
cancerous tissue groups. The mean age of the patients with
normal and cancerous uterine cervical tissue was 44.12±10.61
and 48.25±9.86 years, respectively. The cervical samples
consisted of 16 normal (control) and 256 malignant specimens
(Table I). Cervical cancer is a malignant neoplasm originating
from cells in the cervix uteri and consists of two histological
subtypes. The majority of cervical cancer types are squamous
cell carcinomas, arising in the squamous epithelial cells
that line the cervix. Adenocarcinomas, arising in glandular
epithelial cells, are the second most common type of cervical
cancer (20). Cancer rarely occurs in other types of cells in
the cervix. In this study, 241 of the cancer samples had the
squamous carcinoma subtype and only 15 samples had the
adenocarcinoma subtype. Cervical cancer tissue was further
classified into categories following the review of existing
patient medical records. With regard to the histological grade,
46 cases were grade 1 (G1), with a high differentiation pheno-
type, 154 tumors were moderately differentiated (grade 2, G2)
and 56 tumors had a poorly differentiated phenotype (grade 3, G3). According to the International Federation of Gynecology
and Obstetrics (FIGO) systems, 226 patients were in the early
stages (I-II) and 30 patients were in the advanced stages
(III-IV) of the disease (Table II).

Classification of endometrial cancer specimens into catego-
ries. The mean age of the patients with normal and cancerous
endometrial tissue was 33.12±10.56 and 54.69±9.43 years, respectively. Endometrial samples consisted of 18 normal
(control) and 87 malignant specimens (Table I). The majority
of endometrial cancer types are adenocarcinomas, originating
from epithelial cells that line the endometrium and form the
endometrial glands. There are numerous microscopic subtypes
of
of endometrial carcinomas, including the common endome-

trioid type, the more aggressive papillary serous carcinoma

clear cell endometrial carcinomas (21). Eighty samples
were endometrioid adenocarcinomas (EECs) and 7 samples
were non-endometrioid adenocarcinomas (NNECs), which
included 5 squamous endometrial carcinomas, 1 papillary
serous endometrial carcinoma and 1 adeno-squamous endo-
metrial carcinoma. FIGO grading showed that 30 samples
were well-differentiated (G1) and 57 samples had moderate
(G2) or no (G3) differentiation (Table III).

CD146 is highly expressed in cervical and endometri-
cancer. To investigate the expression of CD146 in cervical
and endometrial cancer, we conducted immunohistochemical
assays with AA4 mAb on all the collected specimens, which
consisted of 377 samples of normal and cancerous tissue. As
summarized in Table I, CD146 was detected in a large number
of cancer samples. The number of true positives (Table I) in
cervical and endometrial cancer was 112 and 59, respectively.
The number of false negatives (Table I) in the cancerous
cervical and endometrial tissue was 144 and 28, respectively.

Table I. Distribution of CD146 in normal and cancerous tissues from the cervix and endometrium.

<table>
<thead>
<tr>
<th>Variable</th>
<th>CD146⁺</th>
<th>CD146⁻</th>
<th>Total</th>
<th>χ²</th>
<th>P-value</th>
<th>PPV</th>
<th>NPV</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>112</td>
<td>144</td>
<td>256</td>
<td>11.900</td>
<td><0.01</td>
<td>100</td>
<td>100.00</td>
<td>43.75</td>
<td>100</td>
</tr>
<tr>
<td>Normal</td>
<td>0</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endometrial samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>59</td>
<td>28</td>
<td>87</td>
<td>5.345</td>
<td><0.05</td>
<td>89.39</td>
<td>28.21</td>
<td>67.81</td>
<td>61.11</td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>11</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CD146, cluster of differentiation 146; PPV, positive predictive value; this is the proportion of positive test results that are true positives after correction with the verdict of clinical diagnosis; PPV = true positives/(true positives+false positives) x 100 = a/(a+c) x 100. NPV, negative predictive value; this is the proportion of negative test results that are correctly diagnosed; NPV = true negatives/(true negatives+false negatives) x 100 = d/(b+d) x 100. Sensitivity, the ability to determine the individuals who have a disease; sensitivity = false negatives/(true positives+false negatives) x 100 = a/(a+b) x 100. Specificity, the ability to determine the individuals who do not have a disease; sensitivity = false negatives/(false positives+false negatives) x 100 = d/(c+d) x 100.

Table II. Correlation of CD146 expression with clinicopathological parameters in cervical carcinoma.

<table>
<thead>
<tr>
<th>Variable</th>
<th>CD146⁺</th>
<th>CD146⁻</th>
<th>Total</th>
<th>χ²</th>
<th>P-value</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><48</td>
<td>52 (39)</td>
<td>81 (61)</td>
<td>133</td>
<td>2.435</td>
<td>0.119</td>
<td>-0.098</td>
</tr>
<tr>
<td>≥48</td>
<td>60 (49)</td>
<td>63 (51)</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histological grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>24 (52)</td>
<td>22 (48)</td>
<td>46</td>
<td>1.830</td>
<td>0.401</td>
<td>0.080</td>
</tr>
<tr>
<td>G2</td>
<td>66 (43)</td>
<td>88 (57)</td>
<td>154</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>22 (39)</td>
<td>34 (61)</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIGO stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>99 (44)</td>
<td>127 (56)</td>
<td>226</td>
<td>0.002</td>
<td>0.961</td>
<td>0.003</td>
</tr>
<tr>
<td>III-IV</td>
<td>13 (43)</td>
<td>17 (57)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histological tumor type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous carcinoma</td>
<td>112 (46)</td>
<td>129 (54)</td>
<td>241</td>
<td>12.393</td>
<td><0.001</td>
<td>0.220</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>0 (0)</td>
<td>15 (100)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CD146, cluster of differentiation 146; G1, a highly differentiated grade of cancer, composed of glands and 5% of lesions have a solid growth pattern; G2, a moderately differentiated grade of cancer, with 6-50% of lesions composed of solid sheets of cells; G3, an undifferentiated grade, with >50% of lesions composed of solid sheets of cells. FIGO stage I-II, early stage of lesion. Stage I includes stage IA (superficial invasive cervical carcinoma [microinvasion]) and stage IB (cervical carcinoma confined to cervix). Stage II includes stage IIA (cervical carcinoma extends onto upper vagina) and IIB (cervical carcinoma extends into parametrium, but does not reach pelvic side wall). Stage III includes stage IIIA (cervical carcinoma extends onto lower vagina) and IIIB (cervical carcinoma extends to the pelvic side wall or causes ureteric obstruction). Stage IV includes stage IVA (cervical carcinoma involves bladder or rectum) and IVB (distant blood-borne spread). *P<0.05 indicates a statistically significant difference.
CD146 expression levels are positively correlated with the histological subtypes of cervical cancer. Immunohistochemical assays showed that CD146 expression did not occur in normal cervical squamous epithelium and mucosal glands. In cervical carcinomas, CD146 was detected mainly in the membranes and cytoplasm of squamous tumor and vascular endothelial cells (Fig. 1A). This was consistent with the localization data from fluorescent immunohistochemical assays, as shown in Fig. 1B, in which the tumor cells with CD146 expression were labeled with CD146 mAb AA4 and the vascular endothelial cells with CD146 expression were confirmed with an endothelial marker for CD31. The overlapping yellow regions are indicative of the co-localization of CD31 and CD146 in vascular cells. These data demonstrated that CD146 was localized in tumor cells and vascular endothelial cells in cervical carcinomas.

For patients who were <48 years old, 39% (52/133) of samples had CD146+ staining, whereas, for patients who were ≥48 years old, a higher number of cases were CD146+ and had a staining rate of 49% (60/123). There was no significant difference between the cervical cancer and normal cervical samples in the two parameters of clinical FIGO stage (I-II and III-IV stages) and histological grade (G1-G3). By contrast, as shown in Table II, the AA4+ reaction rate is significantly higher in squamous cervical carcinoma (112/241, 46.5%) than in cervical adenocarcinoma (0/15, 0%). This indicates that CD146 presence was a potential predictive marker (P=0.000) for discrimination of the two histological subtypes of cervical carcinoma, namely that a cervical carcinoma with higher CD146 expression levels was more likely to be the squamous carcinoma subtype than the adenocarcinoma subtype.

Table III. Correlation of CD146 expression with clinicopathological parameters in endometrial carcinoma.

<table>
<thead>
<tr>
<th>Variable</th>
<th>CD146</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive, n (%)</td>
<td>Negative, n (%)</td>
<td>Total</td>
<td>χ²</td>
<td>P-value</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤5</td>
<td>31 (71)</td>
<td>13 (29)</td>
<td>44</td>
<td>0.284</td>
<td>0.594</td>
<td>0.057</td>
</tr>
<tr>
<td>≥5</td>
<td>28 (65)</td>
<td>15 (35)</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histological grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>16 (53)</td>
<td>14 (47)</td>
<td>30</td>
<td>4.400*<0.05</td>
<td>-0.225</td>
<td></td>
</tr>
<tr>
<td>G2-G3</td>
<td>43 (75)</td>
<td>14 (25)</td>
<td>57</td>
<td>0.202</td>
<td>0.653</td>
<td>-0.048</td>
</tr>
<tr>
<td>FIGO stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>46 (67)</td>
<td>23 (33)</td>
<td>69</td>
<td>5.036*<0.05</td>
<td>-0.241</td>
<td></td>
</tr>
<tr>
<td>III-IV</td>
<td>13 (72)</td>
<td>5 (28)</td>
<td>18</td>
<td>1.117</td>
<td>0.290</td>
<td>-0.113</td>
</tr>
<tr>
<td>Depth of myometrial infiltration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=0 or <0.5</td>
<td>27 (57)</td>
<td>20 (43)</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>0.5</td>
<td>32 (80)</td>
<td>8 (20)</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histological tumor type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endometrioid adenocarcinoma</td>
<td>53 (66)</td>
<td>27 (34)</td>
<td>80</td>
<td>1.117</td>
<td>0.290</td>
<td>-0.113</td>
</tr>
<tr>
<td>Non-endometrioid adenocarcinoma</td>
<td>6 (86)</td>
<td>1 (14)</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P<0.05 indicates a statistically significant difference.

CD146, cluster of differentiation 146; G1, a highly differentiated grade of cancer, composed of glands and 5% of lesions have a solid growth pattern; G2, a moderately differentiated grade of cancer, with 6-50% of lesions composed of solid sheets of cells; G3, an undifferentiated grade, with >50% of lesions composed of solid sheets of cells. FIGO stage I-II, early stage of lesion. Stage I includes stage IA (tumor confined to the uterus, 0 or <0.5 myometrial invasion) and stage IB (tumor confined to the uterus, >0.5 myometrial invasion). Stage II is with cervical stromal invasion, however not beyond the uterus. Stage III includes stage IIIA (tumor invades serosa or adnexa), IIIB (vaginal and/or parametrial involvement), IIIC1 (pelvic lymph node involvement) and IIIC2 (para-aortic lymph node involvement, with or without pelvic node involvement). Stage IV includes stage IVA (tumor invasion bladder mucosa and/or bowel mucosa) and IVB (distant metastases including abdominal metastases and/or inguinal lymph nodes).
Differentiated grade (G1) of endometrial cancer (16/30, 53%) than in the highly differentiated grade (G2-G3) of endometrial cancer (43/57, 75%) than in the highly differentiated grade (G1) of endometrial cancer (16/30, 53%).

No statistically significant differences in CD146 expression existed between CD146 expression and the histological grade; the depth of myometrial invasion indicates that there is no significant difference in CD146 expression between the two subtypes of endometrial cancer (P=0.290).

Similarly, the depth of myometrial infiltration indicated that CD146+ samples were significantly more frequent in the lesions with deep (>0.5) myometrial infiltration (32/40, 80%), compared with the lesions without or with shallow (0 or <0.5) myometrial infiltration (27/47, 57%), as evaluated by statistical analysis (P=0.025).

Discussion

In this study, we demonstrated that the specificity, sensitivity, and PPV of AA4 (a mAb for CD146) is suitable for use in the detection of cervical cancer and endometrial cancer. Results showed that CD146 expression levels were higher in cervical and endometrial cancer tissues compared with their corresponding normal tissues. Notably, CD146 expression was positively and significantly correlated with various subtypes of cervical cancer, as higher expression levels were detected in the squamous carcinoma subtype than in the adenocarcinoma subtype (Table II). The significant correlation which was identified between CD146 expression and the histological classification or the depth of myometrial invasion indicates that CD146 may be involved in the onset and development of endometrial cancer (Table III). This hypothesis was further strengthened by an immunohistofluorescent assay, where the broad expression of CD146 in the cellular membrane of malignant cancer was confirmed. Furthermore, in accordance with previous studies (22,23), immunohistofluorescence data strengthening by an immunohistofluorescent assay
in this study showed that CD146 was present in the majority of cancer blood vessels (Figs. 1 and 2), suggesting that CD146 may be actively implicated in the dissemination and metastasis of cervical cancer and endometrial cancer via the vascular system.

Gynecological malignant cancer, including cervical cancer, endometrial carcinoma and ovarian cancer, is life-threatening to females (24). The incidence of cervical cancer is higher than endometrial and ovarian cancer (20) and the mortality rate of ovarian cancer is the highest among these three types of cancer (25). Therefore, effective screening methods and potential therapeutic targets have been pursued in this field.

At present, the clinically used biomarkers for detection of gynecological malignancies principally include squamous cell carcinoma antigen (SCC), carcinomaembryonic antigen (CEA) and sugar antigens CA125, CA199 and CA153 (26-29).

However, the sensitivity and specificity are not satisfactory for the accuracy of predictive detection for gynecological malignancies (26). Therefore, seeking more reliable biomarkers is likely to aid the successful detection of tumors in the early stages of the disease and also for determining an effective therapeutic approach. Our findings of CD146 overexpression in cervical and endometrial cancer, plus the ability of AA4 to detect CD146 with high sensitivity and specificity, provides insight for further development of CD146 mAbs in the detection of malignant gynecological cancer. It also implies that a combined treatment strategy of anti-CD146 immunotherapy with other traditional chemo- or radiotherapy treatments may be a promising anticancer technique.

Acknowledgements

This study was supported by grants from The National Science and Technology Major Project (2012ZX10002009-016) and The National Natural Science Foundation of China (91029732/81272409).

References