当前位置 首页 科研队伍

姓氏首字母W

王江云  博士 研究员 博士生导师  

国家“杰出青年基金”获得者
中科院生物物理所,中国科学院核酸生物学重点实验室,研究组长

研究方向:化学生物学及合成生物学

电子邮件:jwang@ibp.ac.cn

电       话:010-64887050

通讯地址:北京市朝阳区大屯路15号(100101)

英文版个人网页:http://english.ibp.cas.cn/faculty/index_18316.html?json=http://www.ibp.cas.cn/sourcedb_ibp_cas/cn/ibpexport/EN_xsszmW/202005/t20200519_5582978.json

 

简       历:

  1998 - 2003  美国伊利诺伊大学香槟分校(UIUC),博士

  2003 - 2007  美国斯克利普斯研究所(The Scripps Research Institute),博士后

  2007 - 至今   中国科学院生物物理研究所,研究员

  2015 - 至今   中国科学院大学,岗位教授

获奖及荣誉:

奖项名称 获奖年份
 第十三届中国青年科技奖 2013
 国家杰出青年基金 2013
 亚洲光化学学会青年科学家奖 2014
 教育部长江学者 2015
 北京市科学技术奖 2015
 中组部青年拔尖人才 2015
 第五届中国化学会/英国皇家学会青年化学奖 2016
 创新人才推进计划中青年科技创新领军人才 2016
 国家高层次人才特殊支持计划领军人才 2018

课题组成员:

  工作人员:

  刘晓红 研究员 iuxh@ibp.ac.cn
  李发慧 副研究员 lifahui@ibp.ac.cn
  姜 丽 副研究员 lijiang@ibp.ac.cn
  刘鹏程 工程师 lpc@ibp.ac.cn
  吴祺鹏 课题组秘书 fruthwu@ibp.ac.cn
  胡建森 博士后 jiansenhu@ibp.ac.cn
  张开全 博士后 zhangkaiquan14@mails.ucas.ac.cn
  胡 诚 博士后 chenghu@ibp.ac.cn
  吴宛晏 科研助理  
  杨朝雅 科研助理  

  在读研究生:

  郭旭祯 博士生 guoxuzhen14@mails.ucas.ac.cn
  李咏泽 博士生 liyongze15@mails.ucas.ac.cn
  常 姣 博士生 changjiao19@mails.ucas.ac.cn
  夏 颜 博士生 xiayan19@mails.ucas.ac.cn
  祝晓蕾 硕士生 zhuxiaolei19@mails.ucas.ac.cn
  贾 璐 博士生 jialu20@mails.ucas.ac.cn
  唐文勤 直博生 tangwenqin16@mails.ucas.ac.cn
  俞敏玲 留学生 marlene22yu@mails.ucas.ac.cn
  赵子祎 直博生 zhaoziyi17@mails.ucas.ac.cn
  古全昌 博士生 guquanchang@ibp.ac.cn
  高继堃 直博生 1152959756@qq.com/

社会任职:

 

研究方向:

   1. 蛋白质及RNA定点标记化学生物学,应用于蛋白质核酸药物修饰和优化、光镜及电镜成像。

   2. 酶化学生物学及合成生物学,应用于致病微生物防控及人工光合作用、碳中和等领域。

   3. G-蛋白偶联受体机理研究及合成生物学研究, 应用于主动健康及疾病诊疗。

承担项目情况:

   主要在研项目:

经费来源 项目名称  
 国家自然科学基金委重点支持项目  基于基因密码子扩展的磷酸化蛋白质合成 主持
 中国科学院青年团队  光合作用调控及人工模拟 骨干
 国家自然科学基金委国际合作项目  生物电化学系统中的蛋白质改造 主持
 国家自然科学基金委重大研究计划项目  基于基因密码子扩展的G-蛋白偶联受体动态修饰及信号转导机理研究 主持
 中科院先导B项目  动态分子探针技术 子课题负责人
 国家重点研发计划  活细胞内蛋白质翻译后修饰与活性状态的特异探针 骨干

   部分已结题项目:

经费来源 项目名称  
 国家自然科学基金委国家杰出青年基金项目  化学生物学 主持
 国家自然科学基金委重大研究计划-培育项目  基因信息传递过程中非编码RNA的调控作用机制 主持
 科技部973项目  表观遗传信息建立与解读的分子基础 骨干
 国家自然科学基金委重大研究计划-集成项目  基于生物大分子可编程多层级自组装特性,构建新型生物催化纳米组装体 主持
 中国科学院前沿科学重点研究项目  活细胞中蛋白质及RNA的定点标记新方法及其在生命科学中的应用 主持
 中国科学院重点部署项目  可穿戴式汗液传感器的构建与应用 主持
 国家自然科学基金委应急管理项目  发展基因密码子扩展方法,人工设计光合细胞 主持
 中国科学院重点部署项目  非编码RNA的前沿研究 主持
 科技部973项目  基因密码子的分子生物学研究 骨干
 科技部973项目  表观遗传学的化学生物学研究 课题负责人

课题组学生参加学术活动及获奖情况:

 

 

 

 

   王江云课题组的研究生获得了丰富的研究成果,并积极参加学术活动。例如,王江云课题组于2019年组织酶化学生物学研讨会, 研究生和2018年诺贝尔化学奖获得者Frances Arnold等著名教授展开深入交流。

   王江云课题组已有多名学生获得国家奖学金、中国科学院院长奖学金、光华奖学金、朱李月华优秀博士生奖学金、生物物理所所长奖学金、中国科学院院长奖学金优秀奖、中国科技大学优秀毕业生等。

毕业学生情况:

   在顺利获得学位之后,各位同学带着导师的期待,继续迎接着人生的一个又一个的辉煌!就业单位有:

   1. 国外高校或研究所:美国耶鲁大学、美国康奈尔大学、Scripps 研究所、马萨诸塞大学阿默斯特分校、哥伦比亚大学等

   2. 国内高校、研究所或企事业单位:如中国科学院化学研究所、深圳湾实验室 (独立PI岗位)、北京市理化分析测试中心等;

   3. 国内外公司:IDG投资、药明康德、晶泰科技、贝瑞基因、恒瑞医药等。

课题组近5年取得的重要研究进展:

   1. 2018年 王江云课题组在人工设计光驱动二氧化碳还原酶方面获得重要进展

   http://www.ibp.cas.cn/kyjz/2018kyjz/201811/t20181106_5165515.html

   2. 2018年 王江云组和孙金鹏、刘爱民组合作在 Nature Chemical Biology发表系列论文,阐明基因编码的二氟代酪氨酸在膜蛋白、酶催化机理方面的应用

   http://www.ibp.cas.cn/kyjz/2018kyjz/201808/t20180822_5058259.html

   3. 2019年 王江云课题组在基于基因密码子扩展及新型生物正交反应"S-Click"方法改造氨基酸氧化酶方面取得新进展

   http://www.ibp.cas.cn/kyjz/2019kyjz/201910/t20191008_5404039.html

   4. 2020年 王江云课题组与合作者在G蛋白偶联受体信号转导偏好性的机制研究中取得新进展

   http://www.ibp.cas.cn/kyjz/zxdt/202009/t20200930_5710016.html

   5. 2021年 王江云/钟芳锐、吴钰周教授课题组在生物催化交叉偶联-光驱动卤代芳烃羟化脱卤酶的设计方面获得重要进展

   http://www.ibp.cas.cn/kyjz/zxdt/202101/t20210108_5853979.html

   6. 2021年 王江云/李运良/庄巍课题组在基因编码二维红外探针研究酶活性中心柔性方面获得重要进展

   http://www.ibp.cas.cn/kyjz/zxdt/202103/t20210301_5963635.html

   7. 2021年 中国科学院生物物理研究所王江云研究团队和合作者在G蛋白偶联受体磷酸化编码机制研究中取得新进展

   http://www.ibp.cas.cn/kyjz/zxdt/202105/t20210531_6046213.html

   8. 2021年 王江云/田长麟课题组在光催化CO2还原酶的理性设计方面获得重要进展

   http://www.ibp.cas.cn/kyjz/zxdt/202104/t20210425_5996822.html

   http://www.nsfc.gov.cn/publish/portal0/tab448/info81220.htm

   9. 2021年 王江云研究团队和合作者在smFRET 检测GPCR 调控下游蛋白arrestin的构象分布研究中取得重大进展

   http://www.ibp.cas.cn/kyjz/zxdt/202106/t20210608_6080508.html

   10. 2021年 王江云/夏安东/于龙江课题组在高效光致电子转移光敏蛋白质的理性设计方面获得重要进展

   http://www.ibp.cas.cn/kyjz/zxdt/202106/t20210616_6108414.html

代表论著:

  1. Zheng DD#, Tao M#, Yu LJ#, Liu XH*, Xia AD*, Wang JY*. Ultrafast Photoinduced Electron Transfer in a Photosensitizer Protein. CCS Chem. 2021, 3, 1580-1586. DOI: 10.31635/ccschem.021.202100823

  2. Han MJ#, He QT#, Yang MY#, Chen C, Yao YR, Liu XH, Wang YC, Zhu ZL, Zhu KK, Qu CX, Yang F, Hu C, Guo XZ, Zhang DW, Chen CL*, Sun JP* and Wang JY*. Single-molecule FRET and conformational analysis of beta-arrestin-1 through genetic code expansion and Se-Click reaction. Chemical Science, 2021, DOI: 10.1039/D1SC02653D

  3. Wang YC, Liu PC, Chang J, Xu YP*, Wang JY*. Site-specific selenocysteine incorporation into proteins by genetic engineering. ChemBioChem. 2021. DOI: https://doi.org/10.1002/cbic.202100124

  4. He QT#, Xiao P#, Huang SM#, Jia YL#, Zhu ZL#, Lin JY#, Yang F, Tao XN, Zhao RJ, Gao FY, Niu XG, Xiao KH, Wang JY*, Jin CW*, Sun JP*& Xiao Yu X*. Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2. Nat Commun 2021,12, 2396. DOI: https://doi.org/10.1038/s41467-021-22731-x

  5. Kang FY #, Yu L#, Xia Y#, Minling Yu, Lin Xia, Yuchuan Wang, Lin Yang, Tianyuan Wang, Weimin Gong, Changlin Tian*, Xiaohong Liu*, and Jiangyun Wang*. Rational Design of a Miniature Photocatalytic CO2-Reducing Enzyme. ACS Catal. 2021, 11, 9, 5628-5635. DOI: 10.1021/acscatal.1c00287

  6. Cheng RH#, Lai R#, Peng C#, Lopez J, Li ZH, Naowarojna N, Li KL, Wong C, Lee N, Whelan SA, Qiao L, Grinstaff MW, Wang JY, Cui Q*, and Liu PH*. Implications for an Imidazole-2-yl Carbene Intermediate in the Rhodanase-Catalyzed C-S Bond Formation Reaction of Anaerobic Ergothioneine Biosynthesis. ACS Catal. 2021, 11, 6, 3319-3334. DOI: https://doi.org/10.1021/acscatal.0c04886

  7. Fu Y#, Huang J#, Wu YZ *, Liu XH*, Zhong FR*, and Wang JY*. Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase. J. Am. Chem. Soc. 2021, 143, 2, 617-622. DOI: 10.1021/jacs.0c10882

  8. Wang L#, Zhang J #, Han MJ#, Zhang L#, Chen C#, Huang AP#, Xie RP, Wang GS, Zhu JR, Wang YC, Liu XH*, Zhuang W*, Li YL*, Wang JY*. A Genetically Encoded Two-Dimensional Infrared Probe for Enzyme Active-Site Dynamics. Angew Chem Int Ed Engl. 2021, 60, 11143 -11147. DOI: https://doi.org/10.1002/anie.202016880

  9. An XJ#, Chen C#, Wang TY#, Huang AP#, Zhang DW, Han MJ, Wang JY*. Genetic Incorporation of Selenotyrosine Significantly Improves Enzymatic Activity of Agrobacterium radiobacter Phosphotriesterase. ChemBioChem. 2020, DOI: 10.1002/cbic.202000460

  10. Zheng ZP#, Guo XZ#, Yu ML#, Wang XY, Lu HG, Li FH, Wang JY*. Identification of Human IDO1 Enzyme Activity by Using Genetically Encoded Nitrotyrosine. ChemBioChem 2020 , 21(11):1593 -1596. DOI:10.1002/cbic.201900735

  11. Liu Q#, He QT#, Lyu X#, Yang F#, Zhu ZL#, Xiao P, Yang Z, Zhang F, Yang Z, Wang X, Sun P, Wang Q, Qu C, Gong Z, Lin J, Xu Z, Song S, Huang S, Guo S, Han M, Zhu K, Chen X, Kahsai A., Xiao K, Kong W, Li F, Ruan K, Li Z, Yu X, Niu X, Jin C, Wang J* & Sun J*. DeSiphering receptor core-induced and ligand-dependent conformational changes in arrestin via genetic encoded trimethylsilyl 1H-NMR probe. Nature Communications. 2020, 11, 4857. Doi: https://doi.org/10.1038/s41467-020-18433-5

  12. Hu C, Liu X, Wang J*. Electrostatics affect the glow. Science. 2020, 367(6473):26. doi: 10.1126/science.aba0571.

  13. Huang SM, Yang F, Cai BY, He QT, Liu Q, Qu CX, Han MJ, Kong W, Jia YL, Li F, Yu X, Sun JP*, Wang J*. Genetically Encoded Fluorescent Amino Acid for Monitoring Protein Interactions through FRET. Anal Chem. 2019, 91(23):14936-14942. doi: 10.1021/acs.analchem.9b03305.

  14. Zheng DD, Zhang Y, Liu XH, Wang J*. Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis. Photosynth Res. 2019, doi.org/10.1007/s11120-019-00660-7

  15. Xia L, Han MJ, Zhou L, Huang A, Yang Z, Wang T, Li F, Yu L, Tian C, Zang Z, Yang QZ, Liu C, Hong W, Lu Y, Alfonta L, Wang J*. S-Click Reaction for Isotropic Orientation of Oxidases on Electrodes to Promote Electron Transfer at Low Potentials. Angew Chem Int Ed Engl. 2019, 58(46):16480-16484. doi: 10.1002/anie.201909203.

  16. Yu Y#, Liu X#, Wang J*. Expansion of Redox Chemistry in Designer Metalloenzymes. Acc Chem Res. 2019, 52(3):557-565. doi: 10.1021/acs.accounts.8b00627.

  17. Liu X#, Kang F#, Hu C#, Wang L, Xu Z, Zheng D, Gong W, Lu Y, Ma Y, Wang J*. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nat Chem. 2018, 10 (12):1201-1206. doi: 10.1038/s41557-018-0150-4.

  18. Mu Z, Zou Z, Yang Y, Wang W, Xu Y, Huang J, Cai R, Liu Y, Mo Y, Wang B, Dang Y, Li Y, Liu Y, Jiang Y, Tan Q, Liu X, Hu C, Li H, Wei S, Lou C, Yu Y, Wang J*. A genetically engineered Escherichia coli that senses and degrades tetracycline antibiotic residue. Synth Syst Biotechnol. 2018, 3(3):196-203. doi: 10.1016/j.synbio.2018.05.001.

  19. Dong J, Li F, Gao F, Wei J, Lin Y, Zhang Y, Lou J, Liu G, Dong Y, Liu L, Liu H, Wang J, Gong W*. Structure of tRNA-Modifying Enzyme TiaS and Motions of Its Substrate Binding Zinc Ribbon. J Mol Biol. 2018, 430(21):4183-4194. doi: 10.1016/j.jmb.2018.08.015.

  20. Yang F#, Xiao P#, Qu CX#, Liu Q#, Wang LY, Liu ZX, He QT, Liu C, Xu JY, Li RR, Li MJ, Li Q, Guo XZ, Yang ZY, He DF, Yi F, Ruan K, Shen YM, Yu X, Sun JP*, Wang J*. Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin. Nat Chem Biol. 2018, 14(9):876-886. doi: 10.1038/s41589-018-0115-3. 

  21. Wang L#, Chen X#, Guo X#, Li J, Liu Q, Kang F, Wang X, Hu C, Liu H, Gong W, Zhuang W, Liu X*, Wang J*. Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion. Biophys Rep. 2018, 4(5):273-285. doi: 10.1007/s41048-018-0073-z.

  22. Zhang J#, Wang L#, Zhang J, Zhu J, Pan X, Cui Z, Wang J*, Fang W*, Li Y*. Identifying and Modulating Accidental Fermi Resonance: 2D IR and DFT Study of 4-Azido-l-phenylalanine. J Phys Chem B. 2018, 122(34):8122-8133. doi: 10.1021/acs.jpcb.8b03887.

  23. Li J, Griffith WP, Davis I, Shin I, Wang J, Li F, Wang Y, Wherritt DJ, Liu A*. Cleavage of a carbon-fluorine bond by an engineered cysteine dioxygenase. Nat Chem Biol. 2018, 14(9):853-860. doi: 10.1038/s41589-018-0085-5.

  24. Zhang F#, Zhou Q#, Yang G, An L, Li F*, Wang J*. A genetically encoded 19F NMR probe for lysine acetylation. Chem Commun (Camb). 2018, 54(31):3879-3882. doi: 10.1039/c7cc09825a.

  25. Chen L, Naowarojna N, Song H, Wang S, Wang J, Deng Z, Zhao C, Liu P*. Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C-S Bond Formation. J Am Chem Soc. 2018, 140(13):4604-4612. doi: 10.1021/jacs.7b13628.

  26. Yu Y, Hu C, Xia L, and Wang J*. Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catal. 2018, 8 (3):1851–1863 doi: 10.1021/acscatal.7b03754.

  27. Pan Y, Zhang H, Zheng Y, Zhou J, Yuan J, Yu Y, Wang J*. Resveratrol Exerts Antioxidant Effects by Activating SIRT2 To Deacetylate Prx1. Biochemistry. 2017, 56(48):6325-6328. doi: 10.1021/acs.biochem.7b00859.

  28. Lu J#, Zhang H#, Chen X#, Zou Y, Li J, Wang L, Wu M, Zang J, Yu Y, Zhuang W*, Xia Q*, Wang J*. A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase. Free Radic Biol Med. 2017, 112:287-297. doi: 10.1016/j.freeradbiomed.2017.07.012.

  29. Hu C#, Yu Y#, Wang J*. Improving artificial metalloenzymes' activity by optimizing electron transfer. Chem Commun (Camb). 2017, 53(30):4173-4186. doi: 10.1039/c6cc09921a.

  30. Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, Xiao KH, Wang JY*, Sun JP*. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat Commun. 2015, 6:8202. doi: 10.1038/ncomms9202.

  31. Yang Y#, Zhou Q#, Wang L#, Liu X, Zhang W, Hu M, Dong J, Li J, Xiaoxuan L, Ouyang H, Li H, Gao F, Gong W, Lu Y*, Wang J*. Significant Improvement of Oxidase Activity through the Genetic Incorporation of a Redox-active Unnatural Amino Acid. Chem Sci. 2015, 6(7):3881-3885. doi: 10.1039/C5SC01126D

  32. Yu Y#, Cui C#, Liu X#, Petrik ID, Wang J*, Lu Y*. A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme. J Am Chem Soc. 2015, 137(36):11570-3. doi: 10.1021/jacs.5b07119.

  33. Yu Y, Hu C, Liu X, Wang J*. Synthetic Model of the Oxygen-Evolving Center: Photosystem II under the Spotlight. Chembiochem. 2015, 16(14):1981-3. doi: 10.1002/cbic.201500302.

  34. He T, Gershenson A, Eyles SJ, Lee YJ, Liu WR, Wang J, Gao J, Roberts MF*. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion. J Biol Chem. 2015, 290(31):19334-42. doi: 10.1074/jbc.M115.668343.

  35. Lv X#, Yu Y#, Zhou M, Hu C, Gao F, Li J, Liu X, Deng K, Zheng P, Gong W, Xia A*, Wang J*. Ultrafast photoinduced electron transfer in green fluorescent protein bearing a genetically encoded electron acceptor. J Am Chem Soc. 2015, 137(23):7270-3. doi: 10.1021/jacs.5b03652.

  36. Wang T, Zhou Q*, Li F, Yu Y, Yin X*, Wang J*. Genetic Incorporation of N(ε)-Formyllysine, a New Histone Post-translational Modification. Chembiochem. 2015, 16(10):1440-2. doi: 10.1002/cbic.201500170.  

  37. Zheng Y, Yu F, Wu Y, Si L, Xu H, Zhang C, Xia Q, Xiao S, Wang Q, He Q, Chen P, Wang J, Taira K, Zhang L, Zhou D*. Broadening the versatility of lentiviral vectors as a tool in nucleic acid research via genetic code expansion. Nucleic Acids Res. 2015, 43(11):e73. doi: 10.1093/nar/gkv202.

  38. Li F#, Dong J#, Hu X#, Gong W, Li J, Shen J, Tian H, Wang J*. A covalent approach for site-specific RNA labeling in Mammalian cells. Angew Chem Int Ed Engl. 2015, 54(15):4597-602. doi: 10.1002/anie.201410433.

  39. Yu Y#, Lv X#, Li J, Zhou Q, Cui C, Hosseinzadeh P, Mukherjee A, Nilges MJ, Wang J*, Lu Y*. Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs. J Am Chem Soc. 2015 Apr 15;137(14):4594-7. doi: 10.1021/ja5109936.

  40. Liu X#, Jiang L#, Li J#, Wang L, Yu Y, Zhou Q, Lv X, Gong W, Lu Y, Wang J*. Significant expansion of fluorescent protein sensing ability through the genetic incorporation of superior photo-induced electron-transfer quenchers. J Am Chem Soc. 2014, 136(38):13094-7. doi: 10.1021/ja505219r.

  41. Pan Y, Jin JH, Yu Y*, Wang J*. Significant enhancement of hPrx1 chaperone activity through lysine acetylation. Chembiochem. 2014, 15(12):1773-6. doi: 10.1002/cbic.201402164.

  42. Hu C#, Chan SI#, Sawyer EB#, Yu Y, Wang J*. Metalloprotein design using genetic code expansion. Chem Soc Rev. 2014, 43(18):6498-510. doi: 10.1039/c4cs00018h.

  43. Wu FC#, Zhang H#, Zhou Q, Wu M, Ballard Z, Tian Y, Wang JY*, Niu ZW*, and Huang Y. Expanding the genetic code for site-specific labelling of tobacco mosaic virus coat protein and building biotin-functionalized virus-like particles. Chem. Commun. 2014, 50, 4007-4009. doi: 10.1039/c3cc49137d.

  44. Bi K#, Zheng Y#, Gao F, Dong J, Wang J, Wang Y*, Gong W*. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition. Protein Cell. 2014, 5(2):151-9. doi: 10.1007/s13238-013-0012-1.

  45. Lin YW*, Wang JY* & Lu Y*. Functional tuning and expanding of myoglobin by rational protein design. Science China Chemistry. 2014, 57(3): 346-355. doi: 10.1007/s11426-014-5063-5

  46. Zheng Y, Lv X, Wang J*. A genetically encoded sulfotyrosine for VHR function research. Protein Cell. 2013, 4(10):731-4. doi: 10.1007/s13238-013-3907-y.

  47. Lin YW, Wang J*. Structure and function of heme proteins in non-native states: a mini-review. J Inorg Biochem. 2013, 129:162-71. doi: 10.1016/j.jinorgbio.2013.07.023.

  48. Li F#, Zhang H#, Sun Y#, Pan Y#, Zhou J, Wang J*. Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew Chem Int Ed Engl. 2013, 52(37):9700-4. doi: 10.1002/anie.201303477.

  49. Lin YW, Sawyer EB*, Wang J*. Rational heme protein design: all roads lead to Rome. Chem Asian J. 2013, 8(11):2534-44. doi: 10.1002/asia.201300291.

  50. Liu X#, Li J#, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J*. Significant expansion of the fluorescent protein chromophore through the genetic incorporation of a metal-chelating unnatural amino acid. Angew Chem Int Ed Engl. 2013, 52(18):4805-4809. doi: 10.1002/anie.201301307.

  51. Li F#, Shi P#, Li J#, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W*, Tian C, Wang J*. A genetically encoded 19F NMR probe for tyrosine phosphorylation. Angew Chem Int Ed Engl. 2013, 52(14):3958-62. doi: 10.1002/anie.201300463.

  52. Xu X, Hu X*, Wang J*. A new synthetic protocol for coumarin amino acid. Beilstein J Org Chem. 2013, 9:254-9. doi: 10.3762/bjoc.9.30. 

  53. Zhou Q#, Hu M#, Zhang W#, Jiang L, Perrett S, Zhou J, Wang J*. Probing the function of the Tyr-Cys cross-link in metalloenzymes by the genetic incorporation of 3-methylthiotyrosine. Angew Chem Int Ed Engl. 2013, 52(4):1203-7. doi: 10.1002/anie.201207229.

  54. Yu Z#, Pan Y#, Wang Z, Wang J*, Lin Q*. Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chem Int Ed Engl. 2012, 51(42):10600-4. doi: 10.1002/anie.201205352.

  55. Liu X#, Li J#, Dong J#, Hu C, Gong W*, Wang J*. Genetic incorporation of a metal-chelating amino acid as a probe for protein electron transfer. Angew Chem Int Ed Engl. 2012, 51(41):10261-5. doi: 10.1002/anie.201204962.

  56. Hua T#, Wu D#, Ding W, Wang J, Shaw N*, Liu ZJ*. Studies of human 2,4-dienoyl CoA reductase shed new light on peroxisomal β-oxidation of unsaturated fatty acids. J Biol Chem. 2012, 287(34):28956-65. doi: 10.1074/jbc.M112.385351.

  57. Liu X#, Yu Y#, Hu C, Zhang W, Lu Y*, Wang J*. Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. Angew Chem Int Ed Engl. 2012, 51(18):4312-6. doi: 10.1002/anie.201108756.

  58. Charbon G, Wang J, Brustad E, Schultz PG, Horwich AL, Jacobs-Wagner C, Chapman E*. Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid. Bioorg Med Chem Lett. 2011, 21(20):6067-70. doi: 10.1016/j.bmcl.2011.08.057.

  59. Charbon G, Brustad E, Scott KA, Wang J, L?bner-Olesen A, Schultz PG, Jacobs-Wagner C, Chapman E*. Subcellular protein localization by using a genetically encoded fluorescent amino acid. Chembiochem. 2011, 12(12):1818-21. doi: 10.1002/cbic.201100282.

  60. Wang J*, Zhang W, Song W, Wang Y, Yu Z, Li J, Wu M, Wang L, Zang J, Lin Q*. A biosynthetic route to photoclick chemistry on proteins. J Am Chem Soc. 2010, 132 (42) : 14812 -8. doi: 10.1021/ja104350y.

  61. Mills JH, Lee HS, Liu CC, Wang J, Schultz PG*. A genetically encoded direct sensor of antibody-antigen interactions. Chembiochem. 2009, 10(13):2162-4. doi: 10.1002/cbic.200900254.

  62. Peters FB, Brock A, Wang J, Schultz PG*. Photocleavage of the polypeptide backbone by 2-nitrophenylalanine. Chem Biol. 2009, 16(2):148-52. doi: 10.1016/j.chembiol.2009.01.013.

  63. Guo J, Wang J, Lee JS, Schultz PG*. Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angew Chem Int Ed Engl. 2008, 47(34):6399-401. doi: 10.1002/anie.200802336. No abstract available.

  64. Guo J#, Wang J#, Anderson JC, Schultz PG*. Addition of an alpha-hydroxy acid to the genetic code of bacteria. Angew Chem Int Ed Engl. 2008, 47(4):722-5. doi: 10.1002/anie.200704074

  65. Wang J, Rosenblatt MM, Suslick KS*. NMR structures of peptide--RuII(porphyrin) complexes. J Am Chem Soc. 2007, 129(46):14124-5. doi: 10.1021/ja075532v

  66. Wang J, Schiller SM, Schultz PG*. A biosynthetic route to dehydroalanine-containing proteins.  Angew Chem Int Ed Engl. 2007, 46(36):6849-51. doi: 10.1002/anie.200702305

  67. Wang J, Xie J, Schultz PG*. A genetically encoded fluorescent amino acid. J Am Chem Soc. 2006, 128(27):8738-9. doi: 10.1021/ja062666k

  68. Rosenblatt MM#, Wang J#, Suslick KS*. De novo designed cyclic-peptide heme complexes. Proc Natl Acad Sci U S A. 2003, 100(23):13140-5. doi: 10.1073/pnas.2231273100 

  69. Wang J, Luthey-Schulten ZA, Suslick KS*. Is the olfactory receptor a metalloprotein? Proc Natl Acad Sci U S A. 2003, 100(6):3035-9. doi: 10.1073/pnas.262792899

 

(资料来源:王江云研究员,2021-06-25)