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Frontiers in in situ cryo-electron microscopy and visual proteomics

R sok R sok .
LI Kuanying' , WANG Wen-Xue' , ZHU Yun'™, Xue Liang'™ , SUN Fei'?
(" National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 2Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Sciences, Guangzhou 510530, China.)

Abstract In recent years, with the continuous development of in situ cryo-electron microscopy (cryo-EM) and artificial
intelligence (AI) technologies, the research of structural biology has undergone a paradigm shift. Structural analysis is no
longer confined to isolated and purified biomolecules, and determination of high-resolution in situ structures directly within
cells and tissues becomes feasible. Furthermore, structural analysis of the molecular landscapes of subcellular regions can be
performed to gain a deeper understanding of the molecular mechanisms of living activities in the native functional context.
Through determining in sifu structures of various protein complexes within the cell, it is feasible to visualize the proteome
with spatial and quantitative information, which is often referred to as visual proteomics. Emerging in situ structural methods
represented by cryo-electron tomography (cryo-ET) hold the promise to elucidate the three-dimensional interaction networks
of the intracellular proteome and understand their activities in a systematic manner. To advance in situ cryo-EM/ET and
visual proteomics in China, this review summarizes the new research paradigms and technological advances, showcases the
superiority of new concepts and technologies with representative examples, and discusses the future prospects in the field.
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90 FEARWIBEE X S 2k fn i SRR IS 2 s, — I IR RKIRH “ Sl Ay mn R et
U7 AIHRBBRTRIKRE, JEHEATRBES RN AR (cryo-electron microscopy single particle analysis, cryo-
EM/SPA) 73 ##Z idn (resolution revolution) FISZIRE AWK 731 E A S HER S, 2 2/ L4
B, SNV R o T 85 5 B A>T DI RELEI DT IS T BRI . 4Rk, L AlphaFold (3%
N TR RE s A TN SRV tH IR, F0UR & G AR D27 1 AR BRI AT B — K 03 1 B & WD 5 A TR IR ARG N 31— A
FrHIN . AR E A% (cryo-electron tomography, cryo-ET) Z& 547454472 Cin situ structural
biology) A MITRIE K FE, [ 157E 40 2 LN R A7 ELEEARATT AE W K T i 2 MR S5 R O AT g . MTARLER
JRZH2: (visual proteomics) « 4> F4t4x%% (molecular sociology) « ZE4HMIA4)%% (structural cell biology) %53t
MESE AT . XS TURE — MR AR KR R, BIFESEHE AR T, SR ZIH B AR A dy B A FL T
AR, JHRHLRNERE G g s P AL .

TEARZ IR AL R AR RORITAE T & b, TR B AL BAR U R o PIRAGEORAE A dr B2 7T (1) &%
MR R FEEBEEWER, @ikitag “IRIASE” (“Seeing is believing”) . R AL AT (i 2H 2 AL & e - HE B0
T 2006 1, BEENERMEANE ARG EM SRS, A RMRE A FRAREER. T2 a4
TLEFThRE R (spatial structural and functional landscape) . A AR (Al 4143 T 70 1 /K T 12 (1 5 45 4 5 48
P B AR S 1) 2[RI 598, R AR AT AR A B9 5 IR AR R A N 2 B BAE N 4, m] DLRRAE “ 1k
(molecular sociology) 231, LTI 5, (E4caE i 2 3 BB ER AR (mass spectrometry, MS) 73 HTHEE
2 o BTV 40 AR P B B A . R T DA M BRE B A R B, R ARV SR AR 1 ) A A B A RE R
WICEEMENT R RS 4S5 1 . Rt ATRRLER AL AR AT S M AR, MRS AR e, Al Lo
SCHLH A A P SR R AR RS T . BL cryo-ET AT MK JEAL AR FE 8 T AR RE IS T S 40 M 76 30T AR0IR 76
T PRI, AT B A B G T T B XML T A = 4E R R N B ERI A T A A
B X FEE S E R O EE RENE R UL N TG IS, whn] 58 SEE 48 i i R A7 &
R =4EaT AL 2 8. 2009 4E, Beck %454 cryo-ET AlE B A, YO NI R AR E i b2 i iR 2:47 1
AL A BT A i 2l RN, RPN 2> F AR SRR A5 eryo-ET 5 ERICR AL BUS HOR . B 245
AR 27 S0 il 8 S FARIEAT T RGN T R Z BIHOR RS, XL 5O & T H s E ST 1
WL IR AR R, (H4RAE 1 TR B 1 5T 40 S AT 9 ) B A

MM A EEAR R TG, Hrh oy T UL AL T A BEAEH, TR FERR S 1 5 AR DL Bh A .40 i
gk, MR —NEHE AR RS 80k 202447 H, EERE A BFEEEE PDB T 1 222,036 N F B4
¥, ABATY TGV R 2 40 B G ART AN 53 72 AR AR TS X — AR Rl . nTRLER E A 45 G o Tt S DL R S R dn i A
YIRS Z AR T, AT IR R X N R R G a7, JFEALA R B BOR IEAL T & R & (1)
BB, AR 2 B A (R BT A W HE SR E Al o, SCrT LR AR S 40 Tt 2 BRI E st . ASCR AR AL
A5 HBE 2 AR AT AL, 115 2H 2 PR S5t R e A 3 DA RS i (R AR Rl 55 07 T il 2k

2 FRADSHFERSAUIERREFRRIOMTAZRER

21 ERZESESVRLEHIMBT

TGS D A BRI H 75 ok HARFEf WA RIS Ry B AL R, RS R RS A0 TREEY
WIRIRGEEAEASE . IRZEM R TEEWT, JSH 2 RMGEE B AT S S, B0 A AR EE
PRI BIREE N A G A AE . S B RARIE AR, W AR TR AT RE S ORI SR EAE ], IR S



Gy R AR B )84 . T eryo-ET 3@ H 4B AL B3 AT HAR 2 &M = 4450015 5., 7T DU ORRE FE H R
FEEAVIRR SR e, RERBIRES THEEWENEE. A, cryo-ET Ef% | o SR A E e g
MEAERINESE . SR EE R IT 25, WRIERINE YR BRRE T BEAREREE A T IRE SR,
SR AL R I B A IR . IR B S M A DR i BT H P A I IR AR, A% G S5 R AR AT I VR e LAAE
FANRAREIR L (1) A N AU, T R ALA R PR AR W] LLAE B SR IR PR 558 v B WL B2 I 2 1 () 5 A ) R A
A, AT A SR A BT RENL G SEIRZI I T A

—AMNREWB T RZILESY) (nuclear pore complex, NPC) FIZEHF 5T . NPC A& FH 41 A% 1 P AMZ I Rl & 7
HHIFLIRE A 450, 2RI Iz s i 2@ IEP), NPC 140 & =1 120 MDa, %) 30 MR L&
M (nucleoporins, Nups) 4%, IXLEAN[E K Nups S6HE NMEE G (WY E64), FAH L EEAH B R -4

(cytoplasmic filament). /i34 (cytoplasmic ring, CR). P ¥f Cinner ring, IR). FE ¥4 (luminal ring, LR). #% 5
I (nuclear ring, NR) FI#Z{%E (nuclear basket, NB) 5454 (K& 1, a) U0, EEITAER S A FHAR, A
X4y B ERAL ) NPC FE ST T 2 IS5 e telnn, R cryo-EM/SPA FARMENT T 3-4A 733k ) AR TUaE B
REHAL NPC 1) CR 4509, #5887 CRIEERI A2, thah, 85750 4.2A F1 5.6A (173 5 He e fithh 74k
TS NPC 1) IRDSIRT NRIIZE 1 H P& i A5 AR . IX LE B AR [1) 25115 B AR Bl NPC 4 e D Rede it 1 &
B SCIGHAE, (H NPC 5 58 8 (1) 450 DL S5 A% AR BAE - DI RERASE B R G 8 AL S i F A Rt -

2016 4, Baumeister B ZHFIH cryo-ET HR B IKTE HeLa 40 H A% 8 (1 JE AL AT HLEE T 568 NPC Z5 4019,
KILNPC 7Ef WA B AR BLAR,  IX PR IR B S5 A AR S HL P A () 5 2 AR B A B AH OC o EXRFAS R 774K
A MR R I NPC AT JRAL G5 MBI 7T )5, Beck BRGEZE R IR B4 KM 2L BF NPC AbT BARBCR 9
FRARZS, MRIBCIRAS T NPC &b T BEARBUNMREEZS, I FURIAZ 2 i F2AE NPC AT 4R 25 I 52 2140 1
161, Schwartz PR IE L B 7E DLD-1 40/ NPC JEUAL 454, ABURIRIRE S NPC A EARSE 98 . IEARFRIE K,
%R PR AT FR AR AR, 487 T NPC A 45 RIEPENT . 2022 4, Beck BREZHZE 4 cryo-EM Fl cryo-ET
AR T AN AL IR FRAS R B NPC M5, Z:ifi] 7 K2 70MDa [¥11f 56 5 NPC SCHEZEM, K45 T H i
SEREIIDIRERS NPC 45449181, Rout HRAEZH [RIBAfF5T 1 ERE NPC 7r S Atk M50 S5 AL 4549, #1807 NPC %N E 48
SR R 2 FERI T 40 M A RN FEAE S AN R 25 A 41 53 1) NPC SeAa 409, 2024 47, Villa PREZH A H
cryo-ET MG HBHR, BT 7 NB IZSARAL, 7R 1 H IR AR B D) Re 1) G 45 BE A0 [R)4E, Beck
PRAALAE BRI HRER (eryo-CLEMD Al cryo-ET $ARME R T ARG SR 58 HIV-1 3E AR 1 B R 4 f 4
FURZ B RS, 1 B HIV B AR e MR I HE A R TR NPC RRIREE A, (8 H R8s NPCRY,

A B RER TR R R AE R R 2 H oy B EMEENT I E RS . R R EY 2 EM, NPC E
KI5 5 DA 0 IR A BE T R A 4545 e 45 1 AR W A8 HAH SC I G5 A0 A 77 TR AV E LA PR, T DR 67 4 k F 5 )
EHE RIS SN PR YE T HEERNEAMER . MX NPC IS MM ol DUR I, JRALA R B AR
BTt AR e xE DAAE AR AR PR R i & I B R 2 400 Koy TR EMEN, T H AR E S WA R DI REs
TNHIEER, AR TEREX AER Gy 1 G AN DI e SR 2 R B A

- - . B RyRI-DHPREZE 24

120 nm ATEREN BETHEN

[ 1 s oy ? .




Bl 1 Cryo-ET IR B REZAN B MG MARKI 5]
Fig 1 Examples of cryo-ET studies on the structural composition of complex multi-component assemblies
(), FIH JFEAL AV AT I ILE 45 (PDB: 7R5K) , FEAKIE N A DLD-1 4ifg & . Tomogram K5 EMPIARC-
10700, CR, MIFi¥F: LR, FEMFF: NR, BB, (b), FIFHEALA R B E AR MBI M T2 E 49 (PDB: 8ITR) . FERRIEN
/NI SRS T . Tomogram SRR T-9h CIREZA AR R R EFE . (o), MR H EEHORA#ITI) DHPR-RyR1 @R E &%) (PDB: 5GIW).
FETSRIE S B/ BB B LET4E . Tomogram SKIE T-9h CIREIZH R KR E% . DHPR, —&MknEZ/k; RyR1, | ZUFHH T 24,

22  fEIRRREEASE S FHERE

bR T B AT AW, JEAAEH B A WA AT Re i BIBRIAZAE D), B0 HOBURE 2 R BT A BETE )
B TR ARG G AV E BRI E 7 0 S e LIRS, TCIECR B AN P o 1 IR BRI AR BLAE R o 1 7 i
P NP A R, AR5 T AT BE ] e 7 A B AR WP AT — I 20 BLAEIRAS . Bildn, 78 JEAZ 40 i i
TIHA ML AEAE, AT DAR R IEAE 5  h EAE mRNA, 15 RNA B AT (RNAP) ELFEHH B AFE Kk
ok -BNERBRA A (expressome) o R “ NN RAMNASE RNAP FIRZHEA 54T cryo-EM/SPA W] DLf#EAT#5 T
Y AR GE R4, E AR A ZH AR BT NN B4R 8 B VA NS0 264, T2 M A P PN () LS e R e il
R SCFARN B HEAT cryo-ET #F7, Rappsilber 55 Mahamid A2 17 YCE 4 AD P AL f#HT T B RNAP FIAZHE AR T R
B TUL I, S5E MM BRI AR Cin situ crosslinking MS) R4 & 45k 8L, KIVESH T NusA 4T
RNAP FUZHER 2 ][] mRNA B, N5 T 2 S-Fa M pcad f2 (KB 2) B, HgiAd: 524 E e 5 850
ABRIEE, 1T FV0 6] 5 S B R ) 2> 55 4 “ NusA” FE 530 RNAP FIAZHE {4 (6] B e mlf e, 26 D% S -B A0 6 X G 76 R ORGH
PRI rh 2 i S R P LE AR B 0 AT IR A Bl IE AR AT o X AR ks oryo-ET A5 A2 BE o 1 3 193 51 £
AR S AT B Aok Ak, 70 CIEREARIA cryo-ET & AT T8 WL LR W _E 85 5 1R
FGETE RyR1 55 4 P BT 0 T 25 A R AR5 L AL 551 I T8 DHPR (8] % R % A5 - 45 (6 = BRAA S &5
¥ (B 1, ¢ B8, Cryo-ET ITEMEATIERE R SRk Py 3 flfz s (mitochondria-ER contact site) %R &
WIEERRT), BT AT I 43 1 2H 285 R 128, 291555 DUAG 7R R s A U A 555 4 RE A7 TE I HE 40 T A 25 R 3R H e TR R 35
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B 2 Cryo-ET RGBT R SR AL A BN RSB
Fig 2 Systematic structural analysis of the translation machinery in Mycoplasma pneumoniae cells by cryo-ET
(a), i 76 2 R ARG Z cryo-ET =4 {475 30 tomogram VI T . AT LA EAZHA CEEHE) © NP (PM) F4FAE 14 B 5 40 il 2%
(attachment organelle, AO) %5, % HE AN IV (1) =417 J2 % sub-tomogram AT i H& BUF 35 DURRHT i 0 HE SR 45K . (D), 4 AR P A H A T
L5 S JE A5 B PR o () (A 5 A P 2Ll — > 8 B R A (B 3 . L P RS A (R S tRNACIRES FTBIE T . (), B AR 14
e 0] 4 25 ) R P [ 20 L P A5 BB R AR ) = 4R ) A . AN R ARR A R B DI REIRAS o (d), X A% B ORI R AT IR 2
73REAFENH RNA FEATG S AZE A TE B e - B PR AR IR 7 T ARk 4544

23 [FEZGSHBThEZIEHERR

JR AT A VR R FEAR T8 e 1 AR X, A AT e R IR 7+ R G R B . TR B A FH OO,
RAWrEE, R i 7 T BB S E BAn s TR RE 0 e N RE. —J7 1, AR AR 1)
AWt 873 eryo-ET BARMNT RS> T2 AR BT 45 M1 20 B AR 034, 53— 07T, AlphaFoldBsI1&4% iy
TR A C AP 1 8 R = 4S5 M = e FE T, R e T SRR R B R SR . IXRE, R A
FERPRMEA G FEEEEE, AL (BECHE) 5 E R a5 ESE BT DL B AR
k.

— AN IR FLAN RS Tl 22 R SR G AR T o RS T 32 R G 5 AR Sk R b i 22 5 S AT i S
HRLH RO, K T2 F SR A A A F R B R, R EAFEXKFE (doublet microtubules, DMTs), H1 4
#HiEHE 51K (central apparatus, CA), N HEAE (dyneinarms, DA) 254, XFfH 9 X} 4ME DMTs Alrf gt CA T
BRI “0+27 GERYFERE TR AL ot (B 1, b) B39, F i it KE ATP $R15AE R, (615 DMT AixF



Wwah, MRS SEITEs), XM TR R 2 CEE, HrREMEashiEE s 2 SEU HA
ZAARHE 4, Mo G S RAMUAFE TR TR, RN 2 B EME S Btz 08, EaiEs), F5%&5
PLEIEIG R BE 2R RIEEEEER, R 8 5N EcEE, inl, ado @41
Hhez 1) DMT, SREFHEEARAE cryo-EM/SPA HARFISEE T N TR R, &7 T/NRAET 48 nm H I DMT
WIETFEA, 878 T 47 F DMT AHREE I, #iE 17 10 Mo FHRER MERI T W (microtubule inner proteins, MIPs)
37, [}, Zeev-Ben-Mordehai PR N\ LEHENEAIZE: (PIRET-HE4H 1) DMT FEdH, %50E T 60 FiAN[H 1) DMT £
KEHW,

BARUL EJPETT LS E RS 22 B GAR A R B, SR HARGE T AR [ 22 55 G AR “9+27 RS,
PR 1] 7 X Al 22 SR A RN TH RE T B IR N OB . MHELZ R, Agard BREZLF| A cryo-ET Fl StA J5ik, BEHIIEH T4
FRFIFE S ARNT T 16 nm AT 6-7A 73 HF3 11 DMT 4584, 12507 2544 ooa] LUWLEE 2135 W 1 B (1 R 0R0 — 20 45
¥ o VEEFIHIX L5505 B AE AlphaFold2 /N BRUER 15t 45 M B e I A5 i A rh kAT T o 228G, fER AN A%
JEHh ¥ EF] T Tektins. CCDC105 PLK SPACA9 =Hgit A, At 1 5CT WAL sh YIRS 1 Bl 2245 57 1tk i 4 L
BT, [R, PN U AR R B D AL /N RS TR #AT T DMT B & HF e JEAL 454 (16nm 3~ DMT
IKF] 45 A SrHEED, #BET 36 F MIPs (ES B (B 1, b)), ULHA T EEAE IR AL 450 b % e B A A Lo
Al B,

DA &SR, cryo-ET 545 TS5 R Tt (1) g H 00 20 7 550808 e 1) 456 23 A4S e 40 B SR AL A B h 28 e B i R B
AT RS, XN T AL A 2 E Bk XTI AT AR, AR AR T R IR e E
ARITZE, RN SOVFE R A 40 A B N B A S R E B T EAEM 2%, fefit U E B S DI s B
24 EWHARNLES FERRW

JERASE ¥ 1 LSS it 1 8 T2 AR A4 S 5 A e B AN PR 1 E 70 B 4R A (R B — A K o FERE &4, A A REfg
AR X 56 6 (1) MV 200 L DX P R s 4 B AR it AR AN R R 7 L3 2 A, gk T A H 4 B P A v ) 2 [ 0 1 4
MFW. Raunser BRI cryo-ET B 17/ TR AL 22 SN2 M RO 854, b T £ EL8 [ actin,
tropomyosin. troponin. myosin ZE7E AN [F LN X3 2L 2R 530 A5 DA AE 737K P B 2 FEPE S mT SRR Ak,
MR B fERT T ARG G5 A5 T BICVEMHT ) neublin. titin, myosin-binding protein C £ LA i = 4 B 2 (4 1) J
frestges 48, s 7AW R F 2N E A S TR T E RN ST RALRE R B — R
& HR RN R — P 4R S AR R AR i AR o AR G B ARONE AR 5 M A A i A P A AR A S 15 B AR B AR 2 43
671, ToVEe pE R AR N A T AT anfT i S GRS R . DU 28 SO AR A M A5 A, Mahamid PREEZH 1 1K
F cryo-ET 75 IF F 4 i f 5055 2 A BRA0 M Hhos SR A AZ R AR 25 A A b 1) 3.5 A L8IR 3.0 A MO JF o R . TRFESS M
53 FARAFI 15 FhfH % (8] 44 5 40 P DA 42 B2 B AR B0 3 48 o DL S AT A & D Re i () sh A 45128 &b T ARl A]
A BIAZ BB PR TE AR [F] 40 MR AS T RIS R e 120 A, Bon H T2 4 W ARSI B ZAH B . B b T4 1A
BRI R AS BRAZONE A 235 Ay BB $50 50T B A A = 4 (B4R 31 1 — DS VEGH RS B B AL 28 1) = ZE S5y D Re Rl . R T
I, WA T 2 RAZEARAT SRR AT U B )RR, ORI T A L9 R T T (B G AT I (R AN A B A L
TRFERI R B 1 R S LA B A AL o R U FAE SR, Beck B 7ERN B AN VRN cryo-ET A7 HEAR T
AlIE 3.2 A 3R I — R A EALZ B R S5 #9051t b, cryo-ET FeRIBHE R 1 ik K Uak e 2590240 (] e 38 #%
PR BAR T REARE A0, 5 RAZYE M R4 5 A0 B RO B, 1217 28 49 1 b B 958 B TR ML A 20 AR 9 1) 401
ST RESM -

3 FRARFEFESTNERFREFRARNBIGHER

3.1 EBEZMEM cryo-ET RiE: WERGIEI=HEWN

AR B S KR B DR VA 50 DU IR B B S UK L RE Cvitrification) ,  AEWSE & IR B ZEM K 2> 7K &R
B, S CARAFEYIRE SRS, EATRE S 2 AR Cngip. 2Resm . 415 5840 (WiEk. &
AR FIRkE SRS ZER) (13 75 RIS R A H k8-S E R 772040, M Taifei R



Gy, BRAIRE S AEVRAE T S S R RR AL T B ARRAS, B AR ASHIRE . B IAEE (i AR . R
TRV 5 G R EE ) S S 40 M SO B SER o B NIRRT (plunge freezing) 1& I T-405G . FRAAEY)
R FEHISNM . WEEELN AR AT DA B AR 3R N 15 9%, 7R ] A micro-patterning 7 ¥2% 7 2 A HH 48 190 DA 92 il 4 il 2E Ko7 B
BSOS, AR T Pt 3355 B B, BT vitrification 5B RS — M R G L) 5 umS!; N H I 2 AR AR 3 7
AT B R X 3 O UK T 58, (B R OGE A BRUCIR 25 I AT BESZ A o 6 T B K ) 4 P B ZH SRR o R R TR A R
(high-pressure freezing) i 4 PN UK di I &, —Mo@ R FERTIL 200 pm (B3, @) o ITHFRA —LHEER AT,
un Jet freezing® 155G 1] GE SEELF AR P HRE F . (HEAKIN S vitrification JRELHF 7 SHIFE & &I K 5L HERTEH
BR 20, R EAEFRRNAIR. RS SR B8, O s it A R s T A g — MR
B IH 719

P UR FRLBE R SR JEEBEAE 200 nm — 300 nm BAF, [RGB bl 2D ot B 14 2500 40 fif i 2 [X 3505 804k, ot JEiAir
FE S gEAT kAR B A AT (B 3, ©) o FETWHREAEE T (cryo-FIB) HRE ik FRIGE R R, 207
SR AR DGR I EEAL . YR TT e CEMOVIS BORPR A I U D)1 AT FRIRE i T A2 i) A 42 8
61, Cryo-FIB DAy RESR & & i bE i AT WS S MU U031, a8 S 1 LR DS T AR 1) R, 0T 440 M e A Ut B 24 i
A BN FE i BN AT cryo-FIB JRE AT, BRWEIRARMKE 80 nm EEMFE M (lamella) o DLAEES F44F
NE IR plasma FIB BA SR ES, WA LRSI IR AE2 81, 4R, ik E &R Fib e 1k
H#o1E lamella b 3G bR S 4007 |2 2 R0 @ i (B B o ARITTEAG B I 2 IR R E — R AE 30 nm £ 60
nm Z []E3651, 2Rk cryo-FIB 7EBE Hil 5 i 2 4164 66, 55 # AR ) By U167, il ki Hules 0055 Iy 4 A At 2% A .

H 311k cryo-FIB F i Jak #7725 1 A 188 T0-TIDL K s M AL #F AutoTEM  (Thermo Fisher Scientific) 1 H 2
B EE T cryo-FIB FE il R 525 S iR . AT RESEAGRFES, BT S EAHREE (planchet) F14
SR B SRR IR I, TV EEEAT cryo-FIB JgE il & lamella, 75 ZEXHHZURE S g A7 B A2 A 38 DL SR 8% HH ml o) 2%
lamella ffj X B, T4 K4 Waffle method", VHUT-cryo-FIBUS, cryo-lift-out [72. 76 7145 )5y tH B, Plitzko BRASEZH I
RIELLY) 2 IR serial lift-outBIRERE K AL dh B B UMCK [RIBE 25K lamella, JRATREZELEMR B 740
SRS IE R, RIEFRIET cryo-FIB AT EIF KNG . T ILEJLHRCKRER 400, $4> lamella
I REZE iR A PR/ — 384 (1%-20%) , FoRIFHE &S 7 RBEHI . XAMUEMEE B, WAk 7 e
AL IR) R o T4 WA IR AE A sl oI /., T DME 980615 5 € A7 lamella il & A7 ET6 7881, FET- 550 H 1 1) ¥
HGHLSRECH R (correlative light and electron cryo-microscopy ,cryo-CLEM) (& 3, b) & —FA 5 s 5% LR
8% (fluorescence microscopy, FM) S A A, HIFH 2T FM X9 EFRIC IR M7 U, SRIGH2O0
B AT TR e S lamella 1% 067 & G S B ICEE . BRI, & T35 408U i 2 e bric SR R w] LAR T
cryo-CLEM 8, s AR RIESIOLEALSAMMEED, Dind@EBNEDR. M AEAH
AL DIBE AR EIAR2E (W SNAP FRZEEL HALO #3%5) SEOGEBRME ARG R, EERET KT 2O6hRid M,
ELAE L RE  Hol EE A NG T BRVOGE ST B EALSr, A — P T @ L B R 2 AR, Rl it
WAL B AR AL T BUE FEAE i R T Bt 2 2 B BGRB8 mont U FE R AR A ARAS , BRI AT R Sl 30 4 i A
LR A S B REHI L T E & B e R . i1 SPOTSBULL DNA FEFIHT & K ) s it L IR 5 4 9 0 FhR%s,
R S 1 v A BV B AT MR T 7T B AR ORI 7 ARSI B AR ER AR B AR 1ES), R SRR 814 (H 2 5
X LU E I 20 T AR 280 6 i AL D A PR & A PR o 3R b 5 v il R M B v 1 3 1) A (O o 1) 8 R R R UL B 11
IR I88,

Cryo-ET 75 BSCERFE S AEAS [RMBIA% M F i) MR A R —Miite 241 (tilt-series) SRSEIL=4E=H M (K] 3, d) .
1 B B e 45 T LZE 1% 40 Serial EMBOIEY, Tomography (Thermo Fischer Scientific) i Escil, (B 2x5] A
— RA AR E AT & 0 . Dose-symmetric FEHE SR 72 R 9 RE NS B AR FE M Ok BE AECIU% AR 1K LT 5 AR
W PERE R, CARUN cryo-ET Hds R EM 75 R0 1, T w-E & W (beam-image shift, BIS)
(R EAR R B Je e VR FAE SR Rl T2 N, IR S oryo-ET JE M EUR R T 5 T 212 6 4 — &0
%], HARBIE IS A ST A1), HE A oryo-ET LB IRHI R . 0] odk B . BESERE . BIS 4%
M5 R B RS AG oR B e) B QR AR} beam tilt, 15 1% astigmatism, LR 22 AR charging, REEARISAIEE) DL ] g ~r 4t
FEE AL M AR IR A 2 R R ITE T K I E . Volta AT AR =t 2, (HR AR AL A% AR e . Ffr A 3R BL AL



T TR HE A S PR T HLAE eryo-ET wR g 7 981, IEETF R FF SO AR AL AR 990 AT DLEE G DAL e 5, A B Szl
HARMIE 4R cryo-ET s, A, TEIRTELFAAENL, BEREM R IERE, BMRAMFEN G, BEEFTE
[ BR 22 55 1E 2 55 B B AR T R BT iy SR (1) B AS T = 3 TH 6o S A B B AR 2 S EL 1. Montage tomography A5 i ) b &5
AT DLIE I i BRSO SRR fot X 35 (1032 252 = 4 o 4 [ 1002020, 50y eryo-ET J5ikH RATH T8 3%

YRR N S B R YRR EE A = 4R R (tomogram) RS (B 3, e o FERREMIIEIL R
TN TRA 43X A 1) v Aol BE UKL EAT R ST R e A T %8, v AT 3Bl B BBk ik 6 0kL FH T-100%% 157 471 of 55 11031081, ik
TRE S BB AEEEAT 45 E B3 SR I0 J7 12t  F  H Re[106] 11071 Etomoll04AT AreTomol™0753 5] J& B B e FH I
SAE S A . XSRS R 5 E R tomogram Fie i )2 IS #5257 (weighted back projection)!2o8l,
EARELVE SIRT SR A SRS n] AR IR AT B (H CVE AR B (s 2, 7E cryo-ET H AT . FFARHN 1 BERE
PEAE X KEEERE SOE EMNERNEENEE . &IEA &M MBIRE®, NUDMIO ., compressed
sensingMINAE g B B, (H B = LRSI 2. T AT B EE, SHMKEMEEL) tomogram 3T [
MO BB (K3, ) o BRESIREIER SN, 5% L& L EFIERM, LR EET noise2noise V4 &5 > IR i
JIiEMSL Ol T B G R 2 ST PR T RE S NR SR, A W EEAS YW R B M v . | TR o & RV G
PRI, cryo-ET %% 1 —MAE 60 ], PR AR oL 3R J7 1) BRI B i 23 ()45 BV BRR I AT i SR g R 7 1208l
ICONMOI, 1soNett 145 AL X il R BN HEAT 4 1, SRAME 2> B A5 S 0 tomogram (14 ] fg Al B2 109 1181, 5T 44 i
JEE L 20 B B A 82 AT P 2 v 1A DX 3] DABE AT % B2 181431 (segmentation) DATH BLWLFe B = 4 B 4 {5 125 1291,
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Fig.3 The workflow of cryo-ET for in situ analysis of biomolecular structures within cells or tissues
(8), LEVRE S AU AL S AR AL o VR 38 S v v R (R 07 SUHEAT VR BI AL, AR B R B B AR BEAT IR (D),
PEEEAL G RE G BEAT VAR L OCEG . FEM 215 S8 R T HE B € B AR XM AL B, X B BUR LGB0 All. (c), R
F91TR T THHMTAVRREE T HRE . MERERENME, RGESSBHE A, RS THRIRERZOCEX . (d), 7%RH
T RMEEIRNEE, G I lamella ZES [F) A B N AT HERE LR, AR LIRS R 5. ORI SRR GRS R 511E L EMPIARC-200003 (€),
Wi RFNN S5 G 3AT = 4E M, AR tomogram. (f), FIA Al BT & 06T tomogram HEAT M. (g), 7E tomogram H e fr B bk .
50 T 2B ¥ B B X 3800 A [F) B RO B 77 %o (h), KBk R UL AT W RSP 3T . X B R IR Y 2 L AR I S AL 2
(EMD-33417, EMD-33418, EMD-33419, EMD-33420, EMD-33421) . (i), Al A ARG, X BAUK tomogram o BLAT. oA
AR B o 4l Ml 28 S5 M EAT T TRk



32 FEIBRGEMSH: HEEMEENFBRSEN

UM G M LG SR ISBURIN S FERR 1], BN =4S ] tomogram BT RIS 1) HE R R HA K. X T
tomogram AR [F 1K T E AW, 0T LK H R R B = 4825 sub-tomogram HEELH SR HEAT I DL s i, Bl
T E G523 (sub-tomogram averaging) (1231251, [ = 4E 25K SF I 4L, BT HEAT =445 Ry 25, IR AR
ST BT PR AT, X B HG AR BT Z 4514 23 i (sub-tomogram analysis, StA) .

7£ tomogram HE AL HARERE Wi Z S5 T —2, s EE P (K 3, ¢ o M Tl gmw
R EWEEY, FhPEURREMIAER . 7 T8 Dynamol®?8l, PySeglt?’l, BIikM1281% th AL J LA 43 A
(ke 15 BURE S, T 2R 4R B R T 45 0 5 PR A H B . (2 Fa Pk R I AER (A, 52 R R
W, ANEA RRUEEHE LI . T OF RV M B, nR HAE B ARAE tomogram H1iE 47 154K T I
(template matching) [* 129 1301, & B cryo-ET £ AbH R AF a0 Py Tom UL A AR DL AL D) e H 2L AR FER AL, B
T TR = YEBRR S MBSO R JR 8 = G B T (AL AH ¢ RECRAE I B AR B . ARSIUE BAE = 4EBhR VTR ok 3
SAER, DRI 5 75 40 M IS B8 v A DX 3 IR O P v o A ik G P 3 2 388 o v A0 J2 T e B T sk
FHME S 1292, 1331 g apske, — SR ALEs 2% 2] U HR B A & W48 [ RR Pkt 5 0 R ot R sk, W fE e
VESHA A1) DeepFinder®4, DeePicT21, DeepETPicker®l, crYOLO[M3®l, PickYOLOWSMN4E, ¢ Fiki Phik v FH E
JR I AR KW 77 SR B LS 2 2] O — OO SR8t , ettt . =45 AORS i S5 T i &R T
MR UCEL 7% o A RHEIATE T I R AN ZRE8 (1) C M BIR FE 2E S 5k, DLBCE AR A 5 N TR Re ik g &
FEER022), J 7 e L 2 AN A SHRECISEI A 5 SR ol A B 102 sl 5000l i 9 97 SRk (R

45 cryo-ET TR, 1 TOM/AV3EZ 139 pyTom3l, Dynamoli26], RELION M40y frr, Bl
tomogram HHERL ) = 4ERUKL sub-tomogram AT I LR E o HEE (B 3, h) o AT cryo-EM/SPA EH:H AL T
AN TV ER i) PR 1) — o PR E ) B 2R 5584, eryo-ET/StA £ 7 AR K5I FE K tomogram iX— A5 3. (HP
FhOTIEFE B ER— S, FEROR BRI A B o Tt ISR AT TR B R SR AR M R Rl T iR 4 kR DA
PAZE T HE cryo-ET JR A7 45 R 14214681, Cryo-ET/StA — M E 25 W e U 2 4G 4% 25110 LA K
YRR TR S AP IR . ORI R E R A AEAS cryo-ET A B S I BIM (beam induced motion) P
B RIREIEAS . M 2154 % 31 = 4E tomogram F RS FE K T K m s G 8, —RIRHES T
Wi 2 S5 M e I R R R M Ak, AN TR DI R R D9 ot J AT T A AN TR R R A 481, R 2RI\
=4 CTF ZIER 1491, 7F cryo-EM/SPA H g Se it & M 551250, dose-filteringl®S 1521, D) K2 TP 34 45 # 1 %)
F 1153, ISAIZERIE 2 (1) 5| N A T I SRAT 8 090 BF 1 70 R JELASL 45 1 (1) SR 152 1581, Sy T i vl tomogram H [R] 5 R E(E 5
VR )RR, el — HEEI I cryo-ET/SA i J7i2: 10 emClarity242, EMAN2U06] Warp/M[B231, RELION 414514 — i 5k
BEATAE S sub-tomogram X} 55-F-34 LASRTGHIAG =445 505240, SRR X S5 B 5 %) R — 4t B
X IRAEAT BN EE, AR AR R SR i R AN SF S50/ CTF &S24 Hd Warp/M ¥ cryo-EM 5 cryo-ET #¢
Pb ARG IE— AN —HELE N, AT [FRTSEIL 2 WO, JE T P85 e 0 55 . FEIEAS . CTF LAY, FokiEX
FIZESERAL, (E L2 FRES A S T 4A LLPY 2036 () ST 45 W fg AT 145 48,50, 510 Sy TR VAN ] eryo-ET/SEA F2517]
B AMERR,  feilr A ScipionTomol5el, nextPYP[44l, TomoBEARIS7, TOMOMANISE], TomoNetl1594: — i 3%
A T AFE A PRARNTT R B, WIEE R T 3 A R e 5 .

BESR cryo-ET/StA R A7 517 et i AT s 28 1 3 =4 BUE 2 i, AT cryo-EM/SPA SEAE 2 I (8] R 58 B8 U
(1) cryo-ET/StA & il A M E2? W Ha 13RI 2/ L AE U R AU HE Ml 1 bR ik 2 s SR mE 2 A Fid 2%k 1
SR m A E R cryo-EM/SPA B FRISEE cryo-ET/StA 55 A SPA $2ALWT4A %] 55 2 8 1) S g 1160 1611 fH
T HR R S B B A, XM X7 R IERA R I B B AL H . 0T S A i i DK B 5 G e R e
S EVERNEEY), FES cryo-EM I S0 SPA Sk m] BLEEIR BN 552 Uit 3A A2 47 1 43 9%
JERAVE &5 1262, 1631y 43— AR RSUAR UG IC 75 15t AT 7R R B S 5o T I BT AR cryo-EM U Hh e A AR AZ 41X
FERRE Gpuss 1641651 35 H MCRIENT# T RO TREEWNEA LM, REIEH LEAT cryo-ET/StA 77 2Rk
WEEAFERE W LR ERE . EECENE G, BT AR s EEAL, DL AT R4 N T o 7
M, cryo-ET/StA 193RAE B R KBRS . RKH cryo-ET/StA BIF 57t N ZARYE A FIRE 5T 58 B g S AL i)
Bt 5 AL BRSENE . (A8 HIE, cryo-ET/StA 55 cryo-EM/SPA, 7R ER 2 JEA ML St 45 F A 4 2 NRAS S5 ST 1



JiR AT 5 4 R ) 2 A% 0 R 2 T R B Rk o

EFIRIERE B, T2 Sk TR 45 R Z BEME Cstructural heterogeneity) 7] LR 78 K 4> THLASAT i Th BE 1K)
BNASEEFINLE] . FEZ0 R P JFAL B B A7 R BE S50 ZAEPE SRR BRSNS M i e, Rk =4E45 14 5
KA EE AT T BB W I = 4E LM 73 S50 e KAUSRIE S T2 Lo 73 B S5 AE AR eryo-ET 4
PE AR A DN o AH =G 5 R TTIFAN RE AT A T ANE L L Z5 A 200, ANREE A H BB 45 4 A
o FETHLEREIH cryoDRGN 4577 15 B D)4 & 211t = 70 A b, AT DUEE A R 701 LA AE JR AL AH R 22 (1)
ZE N AR 1661691 B T RAT AN FPIRAS 4544, cryo-ET/StA 38 AT DAAR 4 A [7] 45 #4) b 24 v s 25 21 H 55 AN [R) 4 A IR
S, & KD THLEERThAE B (functional landscape) o ELANFERZHEAA K IR A7 S5-I 70 P R B0, [A]—
Tl 20 B AR S RS N ) TR AL T REARES 20 A0, AEAS (5] ) 48 B P28 DA AN [ () I 58 B 24 1 b B g 2 38058
AN [E 53 A8 51 520 fRAESCRE K 73 AL AR A AR E ) D g B TT e S A MR N AR S I B 24 SRS M L
RN 40 M B A A s sh At 7 20 A

JR A G5 K E A RAAL ST 4 T K TR G EAL G . Cryo-ET/StA JR A BRI KB SGRE T, Al'LA
FERAT AN 7] 85 o BT H ST [0 240 P Py = 4 = [ 0 1 SR AS 0 MR 1) 2 [B) o0 - 5 A D e i (BT 3, 1D o Hh R+ &
AN A A E ALK BE PR AR BIR Go0, I AN IR 2 DIaeiRAs . MBE B2 4/ N 14565555
15 E18, Cryo-ET/StA [ 5E A FE -5 G 40717 A2 IAT 40 M A 4 2 R R W 29 9 98 0 AU B OV LU ) o BT
cryo-ET/StA 1) —=4E7S[a] 53 #7 (spatial analysis) 7EG 7T &AM H A8 1 1 R AE 5 S LT gk ELVEDY, i R
R fR X 351072 22 SRAZ MR8 2 1 22 actin wavel®O WWISE T IR | — RAHT K, IR AR AN 7+ 2 1
A IS SR AL T g5l . 36T ChimeraX [ ArtiaX73IF13E T napari 1) BIKM28IK)FF & thfdi 15 = 4 n] A 4L AL 75 50
NfE R B T =4ER AL, B RGMNGE BT ARG A 0T, BRARSE =R LUE B AR R ITIEIT K I TT
[t —[48,174,175]

Cryo-ET/StA R] DAL TR EALRALZ i — A e s G = 4E s i i, (HAH B TR G g 3 A 4 22,
W EHRA AT, cryo-ET/StA fREE T “HEJ57 AN 588 =4k oW aT gete, I B “ A 5
FHEAY”  (atomic model of the cell) IX—Z5 AW KA H b A8 J1M 1% 1E cryo-ET/StA fibir M g 1 &
fih b, 456 2 05 H0 S LSS B P e 8 7 n] DUBLRL IE 5 41 D) B8 1) R #0020 A s Ay 1276l
33 BEEYIRGBITESRESE RN

A dw RGN FAE R AN T E R R R 5 A 2 MR T IEE O AR . LB LB AR % [ (1A —
TERBEH TR, TP E RS FEFEEART R R . WFi 301 cryo-CLEM,  SEBid #2 v n] 4 4 i B3 A0 S5 72
RN T ARG R (fluorescence cryo-microscopy, cryo-FM) FRER R4 A2 5 7 R T B4 Ceryo-
FIB-SEM) H1idEAT UG AR A i B R A5 312, B KRR BE IR/ UKi5 4, RIS AT DLEE S 28615 5 48 S BB IL R
P IEOGER X AT R e E (B 3, o), ¥4 lamella FZOCEG SR BT B S, BRIBIES cryo-ET K%
WA Fh KU A ELI-TriScope RAREMIG HL T H . GRS 7O Ht R E 2 F — S B, Aaddm
T AR SRR B IR I R D 2R AR Al 2, @I ORI, AT TR Z R G A T RS AR )
K lamella, FERIL T HEHTARBARE R RD3 2544 . ARV REH S B0 L R B 4 3 cryo-FIB-
SEMHFF & 7 CLIEM &4, Bid &R EN SR L B = 4E % CRig, nRGHE e A it 7t H AR i = 4E S A0 &,
Fam i #e s o b B S AR E T R EUR AT PO RS AEOCHE,  SEHL T 110 nm K BE Y B £ 5 1 OROE G
831, pbah, A — SRR AL ik 77 %, bl iFLM (Thermo Fischer) A1 METEOR (Delmic) % . Cryo-
CLEM HARCT Z R THMAED S AR50, R BRSO 53T 10 88 N AR 4 M 1) 72
077, R 1 i 85 510 LA MO A AR AL, RIS IERTEFT 1 40 M 220780, g1 f 8 A8 A 170, 180158 A= ) =2 3
o

B TR S e R NSO B AT TCVEAE AR 55 R AT S, BRI B eryo-FM J8 &8 DL
KON RIS, SIS0 HERY IR HITE 400-500 nm FIVERIN . N 7 SEBU 40 B a7 7T 85 8 nvEsf Al
RN ENL, ARG RBEFE AR (correlative cryo-super resolution light and cryo-electron microscopy, SR-
cryoCLEM) 15 3| [k bk £ 1) 3 FU80-1821, SR-cryoCLEM 7 R 1) & e 15 & T 48 7 HF R BBt B R (Super-
resolution Fluorescence Microscopy, SR-FM) [F/&k . SR-FM REW S AL G006 5 BB AT S BB, SEEA K 2%



A HEEE, 10 PALMUSIHT STORMUSHBRRE RS i e AL 504N 70, B B 0 S 9067 1 AE 20 A (RS 7 70 A1 A3
B LRI & A ROSE!SSIRT ROSE-ZUSOl v SOG4 K e A Nk 641, ilde s T
ST EMEMES (SMLM) IR R 0 HER AR 70 #5 K . SR-FM FINH )72 087 1881, 78 BT VAU FF i 1 R it 4
TGRS . IRVEFIRT 5 IR T R B Y 5 G 2R 1 mEOSEMUES: 801 B 44 (1) 34 0 22 A28 PEFIXT OsO4
(IARIT AT, AT DALE ORI A PRE 68 T 25 460 P [ B S IR 40 S AR, HEBD 1 ks B = 4B M ORI B E KR FE T
FERTP N . 5% 3 cryo-CLEM HiAR AL,  SR-cryoCLEM B 564715 A 98 Yehnic FE i BUigi 7R I cryo-FM
AT PRI AE, R RS RE TREE FHATEUR . B, i EUR A B,
A B R B A TR T AR G AT X AR S . 2015 FAREIREIA S & S R AR B IR T FIR 5+
SERLHAR S T AR R AT N BRARSME S AR MR I GK K IL5E, 4 SR-cryoCLEM 4 J& 2161 i L3047
B T) A FT B0, B, PN RERARZE IS 5N ZE R G R B R BRI T AR A ROG IR B R R G
HOPE-SIM, SEIL T LT 150 nm HGHE- 3R A B 1 R = 4ESCHRN FERERE, 0515 1240 Y B2 25 A1 HeLa 28 /it Y
FROCMARE S EAT T REA S5 70920, R SR-cryoCLEM, Moerner BRAEZH GEA% 7E 30nm 5 5 T X tomogram 71/ =
PN H b AT R OG e AL, SEBLT R 26 S 7E tomogram W XT /N 43 TR BRI, Hess @41 F
H cryo-SR i ARF cryo-FIB-SEM i AR X Z F4i it AT 1 A%, LA=4E77 nf ik 7B MK RE T
(PRI, I T LT A S B 8 1 -3 2B A O &R, BHE &8 A T INAH DG 2 Y I 4B A% N 330, /Nt
22 0 1) B LRORG B X 288 DL R AR B8 e s i MR R AT 4 9 IO s 0 o 5 A 304 . IR S8 58 TAREARIL T cryo-SR/FIB-SEM
FRAE SRS A0 L S A B T A D7 T g, XM R AR AN B 1 B 1 03 e 7 A5 X BB 005 35 B AT T 2 00 e oA 50 1) 55 e e

cryo-CLEM A AFE [F]—#F it _EadiAT 2 RIEM BT, B4E 20 48 M T 25 LA I 73 140757, i xf -3
i £ P S P A2 R X 2 AN - TR O AH EAE AR A 1 B, B B A i 5 b R3S RIMAEA . BT eryo-
CLEM Tl () i RECRBRIR . — =2 z B WM 2z BSOS FE o B2 508 SR-FM B L REAE z il 7 1) Bak 3
tomogram — P JEEE AW HEE . KEFIA cryo-FM 7E tomogram A B #2 € (i He e85 AR B Ak, R T
P2 lamella & LB HAEIMER, cryo-FM Fl cryo-FIB-SEM [ 3D #HI&HE BE L Z0AL T B AL/ lamella JEFE CEI
<150nm). {H/2 H &S Wit S 1) 3D A Ik BEA 2+ WHER Fh . 4h, 1EMH cryo-SR I 141 75 2 il cryo-
FM & 45 PLSE A RIS NI 2 #F0Otrig, I B 7R BEAR R AN F DI 70 T 1888 70 HHA VR 2 6 B e v 11
(195, 1961, FLTF-ymp ot LU FE IR 73 T AR 285 AT cryo-CLEM #3HCKY & T cryo-ET BRI HTEME . AR, FET PRI VAIEE
MRS — IRFRIC I X 73 24 BARsr+, MU 26 5 4% AR W5 il R AL T 2 Fhade #3097,

HeAh, TR AZRESESR (in-cell NMR) £ AR REf% 7540 il 9 it 7 80/ s SR SR A S shas, A5 sk
H5 cryo-ET 454 R 70 IR 2R (A s 4 ia it FR0981, Ll i 50 5 32k B0 Sy ok 4 B PN /N5 0 DX 34T i 1%
MM cryo-soft X-ray tomography (cryo-SXT) U9UG FRALAH M 8545 FE [ A = 4E SR fe /), ReAE R4 RS NadkAT
g, HAMH cryo-ET #ATHA BUR NG 1. X THEEREMAEY NG, B 5% (volume electron
microscopy, VEM) [POOVEEE & R 47 (1ikFE. VEM BERETEGN K 73 HE 2 T 3% 2 di db AT B 22 U0 Fr %, A fing P i 201
2031 ELIIR i A OGS AR S T b R AR .

B T ECG Z PG TTESSIE TR . SRR, RS AN R AT R SR . A A
YIFHOR (integrative structural biology) A LLK RIS I B EEE], i AEMENTI\45H), AlphaFold Fililis Y 55 2 Fih {3 B,
BEERATLZESWER ., FUEEARYE cryo-ET #2 TR, Rt RGHFAEBMITE, WEMSHE.
BRI AR TTVERS), diE RS (quantitative MS) B, RARFIE (native MS) 2061, FAHITHE (single-cell
MS) POGERESRHLR T, . S ENEFEEEREE . LSRG H AR IR I R I E L -E
MEAEAGEE, UKD TFREWNAE S SHINEEERS, 75 cryo-ET/StA JRA &5 FTH, I8 S50 0 9%
BAK (8A-30A) HAHMIN & FhEE A TLIEM €, BRI 7R EAOBH e Hi B E B A R e A AL #5 2 . Rappsilber 5
Mahamid PR E K cryo-ET FHFE AL SRR IE 45 A R T dr 20 B 9 e sk -BH R B A 45, Wos 78G5
SRR ATATYERS), Cryo-ET Al AL A 5T 15t 4 s iy S FH 1) /)N BRORS - JR2 388 1) Jis o7 &6 A Al 9 2090,

34 ETFATEEMEERER

R ERJUE, NLEAE (artificial intelligence, AD HIR CGHKJE, [EZ5EERSATHN, SAiEgHE AR

K T IRZI AR S, WARCK It T a5 AE 2 K g« an AlphaFold®®], RoseTTAFold%, OpenFold?t



SEAHOCER R S M TR A e A, RS AT R R T AP B FIRERT, A T RE IEAE 5O A e v
TR AR OC BB A B RE, RRl 2 AR SR AL A R B B, Al IR ERE il &, Bl Sl 2 2ds b g 7%
HHESRAE TIRKIIAER o JCHAEEAR AL BT T, Al BOREIL 7 AR5 B ORI TERE. cryo-ET J54h B I3 e LEARAS
FELEBRRBIRN . POk BORL R HE, 75 ZAE B Al BOREAT BUG IS SR AR PR ;AL S5 M i 1 85 B 1 3 e e — i
A, TE Al FBITINZEAT B A RABE SRR O S BRI R A BAEE FE, FE A
FORBATIREEBARIZIE . JEALRRT IO S50 — O PR, TREAEEN Al BOREAT AZS B AT, DA{EE B 4> i 1
MRS FHLE] o TR AN [R] 8 F 3% S AT 28 B 21

ROFRE R BER R AR, A RIMFE w5 7 B FEE T 2R RN E, XN SRR,
7 A BRI T RE AL A AR, T AL LE E SRR S O R R I E O 7. Chameleon J2 55— ANERE i il £ i
£ P S A B AR 1 B A RS, 2 A — T T I s ) A W R S A AR T AR TR L S (s AR SR
IEEAARFRLL K blot B [R1S5) SR Ml 45 RAFFE S AR, A — A=A K E A CEEE, TR ) Bk x i
B T AR ot ) A A B0t AR PR 1) % 7 R 222 S Pl A5 o 1) % Jet R A TR B ot ) A A I DAV FC s A
il 7 8, W 1Al PR o ) AR A 1 5 DAIIK S A5 2850 (R o ) 4 SR LE BRI B AT AR R 2 i i 1) 26 IR 2808 . AR,
Chameleon H i 7E 52 B il 3k 75 A7 T 56 G DG 24 ) A 53 U 5 DA RORE S A7 e B m) A0 34 5 ) i, i FLIE TGV B s
T2 B A ZR ) SR AR i 2% o FEJEALAE il &6, JGHZ cryo-FIB B lift-out WA 414G K& TH#E N J i) [a] ) 5
HEAE; FFHSHERE R, MERARARSER. — M EREHART RSN TG S5 REA
Lk, LA B EAAE R BR TIRESEE, 4 BN R AL 5 R T A ER AR AR ) e AR
(I RAE: ot K A R K 2 Ak

HEAT BAR WA AT 77 AR AR Rk B G0E 1 H AR DXOEAT L OB, A G H A DX 3 )30 38 Ak 5 A IR Sk
Wi, AR, —SCBRF UG R IR EE 5% 2 R B B iE B B AR X 4. 1 Danev R4 & 1) SPACEtomo 14,
LRI R R B 22 2 B0 A B A S s lamella 1R 5E A7 BA K H FR DX EON RIS S, ARORARJE T N TERAE I 1), 3
T FE U R P11, SPACEtomo 1280 H RTAE B BEFE S A3 21 T 5000, AR ET X e FS B AR MR b R IR 5 2
NGt — D BV EE . TEFERNLE, WES I EE ORISR BRI E, M AR
{175 B AT KE NG A RE BT 1 58 B B AR DRI IR AT S . B RrRUE, B2 S E R S L LR I A
R

7E MG BRI R G o 5 T, AT+ Al BERIEIER £, WaiSCHR 2T noise2noise [ B M B 1
Topaz'®If1 Cryo-CAREMS), [ # #f 2 iick Mg 75 o 2 STt s (1 7 VSR SR ph e N 4%, AT S 1S e A=, s
B, filk, Xu WA R T —FEE T I0 B IR 2% STHESL ) DUAL BRI, DUAL 38 it {3 FHAG A AE skt 4t
PR 286 T 7 g R A 8 D 0 PR MG P MR S R SEBR 5 R ., Rets B R s IR AR R (5 M kL, 38 S R Pk 32k (1) A 1
Mo XTI IE5E, FRATSCHE R ICONMSIAT IsoNet!!t7), #31 FF /& ) DeepDeWedge 1] F T tomogram i Al
SR W) AR TN USRS A R A E RN GRER, RIS E A 134T tomogram AERURT CTF AR IE, 4R
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